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Abstract. We present a numerical simulation leading to the formation of intense magnetic filaments of kinetic Alfvén waves 
(KAWs) in steady state when the nonlinearity arises due to ponderomotive effects and Joule heating. When the plain KAW is 
perturbed by a transverse perturbation and the magnitude of the pump KAW changes, chaotic filamentary structures of 
magnetic field have been observed. At higher KAW pump wave amplitude, the spectra approaches near the Kolmogorov 5 3k −  

scaling at small spatial scales which steepens to a ~ 2k −  form towards larger spatial scales. The motion is found to be 
quasiperiodic and chaotic for different parametric regimes. Relevance of these studies in magnetosphere and solar wind for 
particle acceleration has also been pointed out. 
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1. Introduction 

In space physics the nonlinear properties of finite amplitude 
Alfvén waves are of great interest, largely due to the fact that 
there have been a great many observations of these waves in 
the solar wind, and in the Earth’s magnetosphere and 
ionosphere. Many have studied the Earth’s space 
environment including formation of discrete auroral arcs 
(Atkinson, 1970; Miura and Sato, 1980), and generation of 
MHD waves and field line resonance (Laysak, 1991). At the 
equatorial magnetosphere, where the magnetospheric plasma 
is hot and the electron thermal speed exceeds the Alfvén 
speed ( te e e Av T m v= > ), the kinetic Alfvén wave (KAW) is 
the appropriate limit. The KAW appears in an intermediate 
beta plasma with ( )2

0 08 1e im m n T Bβ π< = < . 

 
 Cluster spacecraft observations (Sundkvist et al., 2005) in 
the high altitude cusp found KAWs with frequencies less 
than the ion gyrofrequency and non-potential ion-cyclotron 
waves (electromagnetic ion-Bernstein waves) above the ion 
gyrofrequency. Existence of small-scale, large amplitude 
KAWs/spikes at the plasma sheet boundary layer at auroral 
regions of altitudes of 4-6 RE were presented from Polar 
spacecraft observations ( Wagant, 2000).  
 
 Some observations (Stasiewicz, 1997; Louran, 1994) by 
the Freja and Fast Auroral SnapshoT (FAST) spacecrafts 
showed that the physical nature of strong electric spikes in 
the auroral ionosphere and magnetosphere, which are 
characterized by perturbed electric and magnetic fields can be 
explained in terms of KAW.  
 

 The small-scale KAWs are generated from the large scale 
Alfvén waves through one or more of varieties of 
mechanisms which have been proposed to result in the 
filamentation of large amplitude Alfvén waves. Filamentation 
of Alfvén waves could become relevant in the observations 
of Cluster spacecraft in magnetosheath regions close to the 
bow shock (Alexandrova et al., 2004). The present paper 
focuses on the filamentation process arising on account of the 
coupling between the main KAW and the perturbation that 
leads to wave energy concentration in magnetic filaments. 
Effect of these coherent structures on particle acceleration 
has also been pointed out.  
 

To develop a fully numerical solution of KAW 
filamentation in steady state when the nonlinearity arises due 
to ponderomotive effects and Joule heating, the envelope 
nonlinear dynamical equation satisfies the modified nonlinear 
Schrödinger (MNLS) equation. It turns out that by changing 
the parameter governing the pump wave amplitude, this 
MNLS equation numerically brings the chaotic structures in 
the filamentation process.   

 
 In particular, the question of how nonlinear Alfvén waves 
evolve into Alfvén turbulence has been achieved by studying 
the Alfvénic chaos. For nondissipative (Hamiltonian) Alfvén 
systems, Hada and Kennel (1990) showed that the system 
dynamics near the phase-space (soliton) separatrix becomes 
chaotic as the driver amplitude increases. W. Horoton (1997) 
studied solar wind driven dynamics of the magnetosphere 
and found a highly complex and chaotic orbits in the ion 
motion in the high pressure-to-magnetic pressure reversed 
field current. The nonlinear dynamics of KAW turbulence 
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caused by the three-wave interaction among KAWs and its 
application to the Earth’s magnetosphere were studied by 
Voitenko (1998).   

2. Model equations 
In an intermediate β ( 1e im m β< < ) plasma magnetized by 

a uniform ambient magnetic field 0B  along the z direction, 
the dynamical equation governing the propagation (in the x-z 
plane) of low frequency, long wavelength, finite amplitude 
KAW, can be obtained by using the standard method (Shukla 
and Stenflo, 1999, 2000; Shukla and Sharma, 2002; Shukla 
and Sharma et al., 2004) and written as 
 

( )2
2

2

2

1
2

2
yg By y y

y

B B B
i i e B

z x gx

∂ ∂ ∂
+ Γ + + − =

∂ ∂ ∂
1 0                         (1) 

 
 where .  is a parameter characterizing the 

normalized perpendicular wavenumber in terms of electron’s 
collisionless  skin depth, given by 

yzyz BkB <<∂ Γ

 

( ) 0te A x ev v k λΓ =                                                                (2)                                                         
 

g  is the parameter governing the pump wave amplitude. The 
normalizing   values   are    02n zz k= , n te e Ax v vλ= , and                                                       

( ){ }
1

22 2 2
0 01 1 16n A zB v k nη δ π ω

−
= − +⎡ ⎤⎣ ⎦eT where 0 xk ( 0 zk ) is the 

component of the wave vector perpendicular (parallel) to 

0ˆBz , ( )s e ic T m=  is the ion sound speed, ( )0ci icB m cω =  is 

the ion gyrofrequency, c is the speed of light, 

( 2
04e ec m nλ = )2π  is the collisionless electron skin depth,  

n0 is the unperturbed plasma number density, Te represents 
the plasma electron temperature, 2 2

ciη ω ω= , 
2
0e x i zm k m kδ = 2

0 , and   is the KAW frequency.  )( cω<<ω

When g  = 0, equation (1) is reduced to modified NLS 
equation, which was studied numerically by the same authors 
(Singh and Sharma, 2006). As g 0≠ , however, the 
integrability of Eq. (1) is broken and the spatial chaos are 
expected. 
   

When  = 0, Eq. (1) admits the uniform-wave-train 
solution  

Γ

( ) 0
iz

ys yB z B e−=                                                                  (3) 

where 0yB  are 

( )
1 2

1
0

1
0, ln 1 2

2yB
g

−= ± −
⎡
⎢
⎣ ⎦

g
⎤
⎥                                          (4) 

We assume the initial state to be 0yB .   

 
The complex nonlinear evolution of KAW having a fixed 

Γ at z = 0 and an initial amplitude as  

( ) ( )( )0, 0 1 cosy yB x B xε α= +                                           (5) 

is studied by using Eq. (1) in a periodic box. Here 0yB  is the 
amplitude of the homogenous pump KAW, ε  and α  are the 
parameters which remain constant in the simulation. Before 
proceeding further, one can analyze this evolution in the 
linear regime by doing stability analysis. Therefore, this 
analysis can be done by following the standard procedure 
(Cramer and Watson, 1984).  One can treat this problem as if 
we have a uniform plane KAW and perturbation is 
superimposed on it. In linearized form, Eq. (1) leads to the 
following dispersion relation: 
 

2
0

2 22 2 2 4 2
04 4 2 e yg B

yK K Bα α α α 0− Γ + Γ − + =             (6)    
                

where the spatial propagating dependence is proportional 
to ( )exp iKz− . The linear growth rate as a function of 
perturbation wave number α  can be calculated from 
 

( )
2

0
2 2 2

02 2 yg B
yi B eγ α α α= − Γ + −α                                 (7) 

 

where K iγ= . It is obvious that the purely growing case is 
recovered when Γ  = 0, provided that the perturbation wave 
number α  lies in the range  
     

 ( ){ }2
00 2 expcr y yB g Bα α< < = 0                             (8) 

 

The unstable wave number corresponding to the maximum 
instability is 
 

( )2
max 0 0expy yB g Bα =                                                    (9) 

3. Numerical simulation 

We solve Eq. (1) satisfied by KAW numerically, in a 
periodic box for the initial conditions of simulation as 
specified by Eq. (5).  The pseudo-spectral method of 
simulation has been employed for transverse (x-direction) 
space integration with periodic length xL = 2π α , and the 
predictor-corrector method for propagation along z-direction 
where α  is the wave number ( maxα ) corresponding to the 
maximum instability mode. The linear evolution is exactly 
integrated which forms an important feature of the code to 
accurately reproduce the instability and a fixed step size in z 
( Δ z = 5× 410− ) was used in order to monitor the invariants 
of NLS equation to the desired accuracy. The accuracy was 
determined by the constancy of the number 2

kk
N B= ∑  

when 0Γ = and g  = 0. During the computation the 

conserved quantity was preserved to the order of 510−  
accuracy. The diagnostics were carried out at every Δ z = 
0.01 using 128 grid points. After testing this algorithm, we 
modified it for 0Γ ≠ and g  ≠ 0 case of equation (1).  
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When , Eq. (1) becomes more general MNLS 
equation which shows nearly integrable dynamics and 
irregular solution that exhibits the chaotic motion. The results 
of filament formation of KAW by changing the parameter g 
and keeping  (= 0.01) fixed are presented below.    

0g ≠

Γ
 
Investigations of nonlinear dynamical systems both 

theoretical and experimental have shown that both relatively 
simple low-dimensional systems and highly complex infinite 
dimensional systems may evolve from a steady state to a 
chaotic state as a control parameter is increased. 
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Fig. 1. The magnetic field intensity profile of KAW (a) g = 0.001, (b) g = 
0.01, (c) g = 0.3, and (d) g = 0.05. 
 

To have a detailed understanding we choose one typical 
case of MNLS equation when 0.1β =  , at different g  values. 
The magnetic-field intensity profiles of KAW with g  = 
0.001, 0.01, 0.03, and 0.05 are shown in Figs. 1(a)-1(d). It 
has been observed that magnetic filamentary structures are 
formed. Perturbation takes energy from the main KAW by 
nonlinear interaction, grows, and finally can form their own 
filaments. Therefore, the KAW breaks up into filamentary 
structures where the intensity is very high. When g = 0.001 
the peaks of the filaments are of almost same intensity. As we 
increase the value of g , the peaks are of different intensity 
as seen from Fig. 1(d) when g  = 0.05. The same authors 
have studied recently the filament formation when g = 0 
(Singh and Sharma, 2006). They found that as the value of 
the normalized wave number increases from Γ = 0, the 
periodicity observed in filament formation was destroyed and 
the pattern was complex. 

 
We construct the phase space diagrams 

( ) ( )0, , 0,y yB z d B z dz⎡⎣ ⎤⎦  and the results are presented in

 Figs. 2(a)-2(d).  As seen in phase space diagram, finite 
number of dots with irregular HMO crossings has been 

observed. As the value of g increases, infinite number of dots 
filling up the substantial portions of phase space has been 
observed. The KAW field evolution from coherence to 
turbulence is spatially chaotic. 
 

In order to study the effect of filament formation on the 
wave number spectrum, we have studied 2

kB  against zk  at a  
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Fig. 2. Phase-space plots of KAW (a) g = 0.001, (b) g = 0.01, (c) g = 0.3, and 
(d) g = 0.05. 
 
fixed x (= 0) value.  Figs. 3(a)-3(d) present the power spectra 

2
kB  against zk . As the value of g increases, the negative 

exponent of k increases and the spectral intensity confined to 
lower wave number spreads to higher wave number. It 
appears that by further increasing the value of g = 0.05, the 
spectra approaches near the Kolmogorov 5 3k −  scaling at 
small spatial scales which steepens to a ~ 2k −  form towards 
larger spatial scales. 
 

In addition, we also measure the largest Lyapunov 
exponent. It is seen from Fig. (4) that the largest Lyapunov 
exponent is positive for almost all the values of  g used here; 
the system is defined to be chaotic. Thus KAW can exhibit 
chaotic dynamics giving rise to a turbulent component of the 
magnetic fluctuations.  It shows that the degree of Alfvén 
chaos is a function of the parameter g. 
 

We point out that our results can be quite useful to the 
understanding of nonlinear wave filamentation in the 
geosynchronous plasma environment (5-10 RE), cusp region 
of magnetopause, as well as in the solar wind. First, we 
discuss the relevance of our work to the geostationary orbit, 
the orbital location where a body holds a fixed position 
relative to the rotating Earth, located at 6.6 RE.  The typical 
plasma parameters (Garrett and  DeForest, 1979) in this 
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region are B0 ∼ 200 nT, ~10 cm-3, T~1 Kev then 0n β ~0.1, 

~ 1.4×  108 cm/s, cm/s, Av 91.3 10tev = × ciω =19.16 Hz, 

cm. The cusp is an important region in the 
Earth's magnetosphere where the solar wind can directly  

61.6 10ρ = ×
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Fig. 3. The power spectra of KAW (a) g = 0.001, (b) g = 0.01, (c) g = 0.3, 
and (d) g = 0.05. The thick line curve indicates the scaling. 
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Fig. 4. Lyapunov exponent versus g. 
 
access the ionosphere, and where large amounts of the 
plasma as well as kinetic and electromagnetic energies are 
transported. The typical plasma parameters (Sundkvist, 2005) 
in this region are B0 ∼ 100 nT, ~ 5 cm-3, T=100 eV; then 0n

β ~0.02, ~  cm/s, , Av 79.9 10× 84.2 10tev = × ciω = 9.58 Hz, 

cm. Outside the Earth’s magnetosphere, the typical 
values of several solar wind parameters (Cravens, 2004) as 
measured by Helios 2 at 1 AU are B0 ∼ 6 nT, ~ 3 cm-3, 

T=10ev; then 

610ρ =

0n

β  ~ 0.335,  ~ 7.7  cm/s, 

cm/s, 
Av 610×

81.3 10tev = × ciω =0.575 Hz, cm. The 
characteristic scale of the filament size for all the three cases 
is of the order of 

65.4 10ρ = ×

ρ  in transverse direction and 310 ρ in 
propagation z-direction for lower value of g and as the value 
of g  increases the filament size decreases nearly half. 
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Fig. 5. : Velocity distribution function:  (a) at time τ=0 and τ= 10 for 
different values of g, (b) magnified view of the superthermal tail of (a).  

 
  Finally we have studied the evolution of the velocity 
distribution function due to localized field structures. The 
repeated interaction of the ions with the localized field can be 
described by the velocity space diffusion. The evolution of 
the velocity distribution function can be described by the 
Fokker- Plank equation given by  
 

 ( )f fD v
t v v

⎛ ⎞
⎜
⎝ ⎠

⎟
∂ ∂∂=
∂ ∂ ∂

                 (10) 
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where D(v) is the diffusion coefficient defined by  
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The value of the |Ek| for continuously changing k can be 
found from the overall shape of the Fourier spectrum. We use 
the approximate form  |Ek| =  |Ekmin| | kmin/ k |η/2  where η is 
the spectral index and lA is the periodicity length.  

 
Defining the scaled time τ = (vthi)2/ D0, and normalized the 

velocity by thermal velocity (vthi) of ions ,  D(v) by D0  and 
f(t,v) by  f(0,0) , the normalized Fokker-Plank  equation can 
be written as  

 

 ( )f fD u
u uτ

∂ ∂ ∂⎛= ⎜∂ ∂ ∂⎝ ⎠
⎞
⎟                       (12) 

 

where D0 is defined by 
 

min

min

22
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                 (13) 

 

We proceed to solve the Eq. (12) numerically with the 
Maxwellian distribution as the initial condition. Fig. (5) 
displays the velocity distribution function at time τ = 0 and 
for different values of g at τ =10. It is evident from the figure 
that the localized fields accelerate some ions and thus 
populating the super-thermal tail. Also the extent to which 
the superthermal tail will be populated is dependent on the g 
values.   

4. Summary and discussion 
We have investigated the filamentation instabilities of large-
amplitude, KAWs propagating at an angle to the background 
magnetic field. The structures observed in the magnetosphere 
and solar wind can be generated by a nonlinear stage of 
kinetic Alfvén wave evolution which produces large scale 
structures and further collapses transversely to small scale 
structures which allows dissipation processes like ion-
cyclotron resonance or Laundau damping to act, leading to 
the heating of the plasma.  The localized fields accelerate 
some ions and thus populating the super-thermal tail.  
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