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Abstract Magnetic fields play an important role in defining and modulating the
space environment within the heliosphere. How these magnetic fields originate and
evolve in stars such as the Sun or planets such as the Earth, is in itself a compelling
question – the answer to which is of universal importance to astrophysics and space
science. It is thought that magnetic fields are created through a dynamo process
which involves complex, non-linear interactions within the magnetized plasma or
fluid that is often encountered in astrophysical systems. In this chapter, after briefly
discussing the importance of magnetic fields in the heliosphere, we provide a gen-
tle introduction to concepts in magnetohydrodynamics, describe the mathematical
foundation of mean-field dynamo theory, and explain the basic physical processes
that constitute the dynamo mechanism. In doing this, we focus mainly on our star
– the Sun – which is the primary source of heliospheric magnetic fields and their
variability.

1 Introduction: Magnetic Fields in the Heliosphere

The heliosphere – or the sphere of influence of the Sun – encompasses the solar
system including all its planets. The environment within this heliosphere is primar-
ily governed by the radiative, particulate, and magnetic output of the Sun. Slow
long-term variation in the Sun’s radiative and magnetic output influences planetary
atmospheres and climate. For example, a period of reduced solar activity between
1645-1715 AD, known as the Maunder minimum, coincided with a period of global
cooling known as theLittle Ice Age. On shorter timescales, explosive solar events
such as flares and Coronal Mass Ejections (CMEs) hurl vast amounts of magnetized
plasma into space; these adversely affect satellite operations, telecommunication fa-
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cilities, oil-pipelines and air-traffic on polar routes on the one hand, but generates
beautiful auroras on the other hand. Understanding solar variability and the changes
that it induces in the heliosphere are therefore of particular importance for plane-
tary atmospheres, our technologies in space and on Earth and our life and society in
general.

Much of the solar phenomena that defines and modulates the heliosphere can be
traced back to the presence of magnetic fields in the Sun. These magnetic fields
are ever-changing. On relatively short timescales, of seconds to days, sudden mag-
netic re-organization, mediated through magnetic reconnection leads to eruptive
processes such as flares and CMEs. On moderate timescales, the Sun’s magnetic
output varies periodically, with an average period of11 years. On relatively longer
timescales of centuries to millennia, the magnetic (and the coupled radiative) out-
put varies in a non-periodic irregular manner. It is widely believed that this so-
lar magnetic variability, on timescales stretching from years to stellar evolutionary
timescales (on the order of billions of years), has its origin in a dynamo mechanism
in the Sun’s interior. Other solar-like stars are also known to have variable magnetic
activity – most likely due to the action of a similar dynamo mechanism in their
interiors.

Some planets, such as the Earth, have magnetic fields. The Earth’s magnetic field
is much weaker compared to the Sun but it plays an important role in maintaining
the magnetosphere – which shields us from harmful space radiation, plasma and
energetic particles such as cosmic rays. Even though the Earth’s magnetic field ap-
pears relatively non-varying, it is known to have reversed direction (flipping of the
magnetic polarities) many times in the past. Moreover, if the Earth’s magnetic fields
were not being continually generated, it would possibly have decayed on a timescale
of 20,000years. This points out that a dynamo mechanism is working in the Earth’s
interior, creating and changing the geomagnetic field. It is quite likely that life as we
know it, would not have been possible without the shielding and protective effects
of the geomagnetic field which owes its existence to the geo-dynamo.

The earlier discussion illuminates the important role that dynamo processes play
in the heliosphere, both in determining solar variability and in maintaining the ge-
omagnetic field. Our focus here is on understanding the physical processes that un-
derlie this dynamo mechanism. The rest of this chapter is organized as follows. In
Section 2 we introduce the subject of magnetohydrodynamics and outline key phys-
ical concepts that are critical to understanding the dynamo mechanism. In Section 3
we lay the mathematical basis of dynamo theory through the dynamo equations and
describe how they are derived. In Section 4 we focus on the solar dynamo as a rep-
resentative example of dynamo action in the heliosphere. Finally, we end with some
concluding remarks in Section 7.
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2 Magnetohydrodynamics: Basic Theoretical Ideas

At about the same time that the magnetic nature of the sunspot cycle was being es-
tablished through observations in the early 20th Century, efforts were on to construct
a theory to describe the behavior of magnetic fields in a plasma. This theory, which
came to be known as magnetohydrodynamics (MHD), was pioneered by Hannes
Alv én – who was eventually awarded the Nobel Prize in 1970 for his contributions
to MHD. Some basic concepts in MHD are crucial for gaining an insight into the dy-
namo mechanism and understanding many observable features of the solar magnetic
cycle; it is therefore logical to start with these concepts. Assuming that readers have
some background knowledge of Electromagnetism, let us begin with the Maxwell’s
equations which describe electromagnetic fields and relate them to their sources.
Two equations are of particular importance here:

∇×E =−∂B
∂ t

, (1)

∇×B = µ0J. (2)

HereE andB denotes electric and magnetic fields, respectively,t denotes time,µ0

the permeability of free space andJ the current density. In Equation 2 above we have
neglected the displacement current term (assuming that we are dealing with a non-
relativistic system). A further equation of relevance here is the one that expresses
Ohm’s law in a conductor (of conductivityσ ) moving with a velocityv relative to
the magnetic field:

J = σ(E+v×B). (3)

Substituting forE from Equation 3 in Equation 1, we have

∂B
∂ t

= ∇× (v×B− J
σ

). (4)

Now, substituting forJ from Equation 2 in Equation 4 and using the relationship
λ = 1/µ0σ (whereλ is the magnetic diffusivity), we get:

∂B
∂ t

= ∇× (v×B−λ∇×B). (5)

If magnetic diffusivity is constant in space, Equation 5 simplifies to:

∂B
∂ t

= ∇× (v×B)+λ∇2B. (6)

What we have ended up deriving here is known as the induction equation (expressed
in different forms in Equations 5 and 6). This is one of the most fundamental equa-
tions in MHD and it describes the behavior of magnetic fields in a plasma system.
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In deriving the induction equation, some assumptions are made related to
the system in which this equation is applicable. These assumptions are:

• The plasma is a continuum – valid when the typical length scale of the
system exceeds the ion gyro-radius

• The plasma is a single fluid – valid if the system length scale is much larger
than the Debye shielding length

• Plasma is in thermodynamic equilibrium with distribution close to
Maxwellian – valid if system timescale exceeds typical collision timescale
and length scale exceeds mean free path

• Relativistic effects are unimportant – holds if typical systems (flow) speeds
are much less than the speed of light

• Permeability, and in certain cases conductivity or diffusivity are isotropic

Another important equation for the MHD system describes how the velocity field
v evolves (the equation of motion):

∂v
∂ t

+(v.∇)v =− 1
ρ

∇
(

p+
B2

8π

)
+

(B.∇)B
4πρ

+g+ν ∇2v, (7)

whereρ is the density,p the pressure,g the gravitational field andν the kinematic
viscosity of the plasma. Note that Equation 7 is the familiar Navier-Stokes equation
of hydrodynamics with two additional terms in it due to the inclusion of magnetic
forces. The first additional termB2/8π is the pressure contribution from the mag-
netic field and the second term(B.∇)B/4πρ signifies tension along the magnetic
field lines.

The induction equation (Equation 5 or 6), the equation of motion (Equation 7),
the energy equation for the system

∂ p
∂ t

+(v ·∇)p+ γ p∇ ·v = Q, (8)

whereγ is the adiabatic coefficient and the termQ encompasses effects of heating,
cooling and conduction (including ohmic heating), the continuity equation

∂ρ
∂ t

+∇ · (ρv) = 0, (9)

and
∇ ·B = 0, (10)

provides a complete description of the MHD system.
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2.1 Magnetic Reynolds Number

The ratio of the first term to the second term on the R.H.S. of the induction equation
(Equation 6) is

Rm =
VB/L
λB/L2 =

VL
λ

=
τλ
τV

. (11)

The dimensionless number,Rm, is known as the magnetic Reynolds number andV,
B, L are the typical values of velocity, magnetic field and length scale of the sys-
tem under consideration (τλ andτV are typical diffusion and velocity timescales).
One aspect which is immediately obvious is thatRm, which is proportional toL,
will be larger by orders of magnitude in astrophysical systems relative to laboratory
systems. Therefore magnetic fields in astrophysical systems behave very differently
from their laboratory counterparts. For example, it is very difficult to build a labora-
tory model of a dynamo that is sustained through plasma motions acting to counter
dissipation (through diffusion). However, significant progress have been made in the
last decade in building laboratory dynamos and in the month of November, 1999,
magnetic field self-excitation and a growing dynamo mode was observed for the
very first time in any laboratory at the Riga Dynamo Facility in Latvia (Gailitis et
al. 2000).

2.2 Magnetic Diffusion

If we consider the extreme limit,Rm¿ 1, then we can ignore the first term on the
R.H.S. of Equation 6. In that case we are left with:

∂B
∂ t

= λ∇2B. (12)

This is the magnetic diffusion equation and expresses the fact that in the ab-
sence of any source or forcing term (involving plasma motions and associated
energy), the initial magnetic field will simply diffuse away (with any inhomo-
geneity being smoothed out) with a characteristic timescale ofτd = L2/λ over
a typical length scale ofL.

2.3 Concept of Flux Freezing

If RmÀ 1, as in most astrophysical systems, then the diffusion term in Equation 6
is relatively unimportant compared to the preceding term. When one considers the
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ideal MHD limit (infinite conductivity and therefore very highRm) and drops the
diffusion term altogether, Equation 6 reduces to:

∂B
∂ t

= ∇× (v×B), (13)

in which case it can be shown that (see e.g., Choudhuri 1998)

d
dt

∫

S
B·dS= 0. (14)

The above equation describes the following physical phenomenon: If the magnetic
field vector in a plasma system satisfies Equation 13, then the magnetic flux through
any surface (say,S) constituting a part of the moving fluid will remain time-invariant
when that fluid element is moving. In other words, magnetic fields remain frozen to
the flow and moves along with it.

This is known as Alfv́en’s theorem of flux-freezing (Alfv́en 1942) and can be
appreciated by recognizing that ifRmÀ 1, as in most astrophysical systems,
then magnetic fields attached to a moving fluid parcel do not have enough
time to be dissipated or dispersed through diffusion (thinkτλ /τV À 1, where
τv = L/v is the flow timescale). Therefore the frozen-in magnetic field moves
with the fluid and in situations where the plasma-β parameter (ratio of gas to
magnetic pressure) is high, allows the fluid to distort it. This is a fundamen-
tal concept in MHD and implies that any twisting or stretching motion in a
magnetized plasma will result in the magnetic field being twisted or stretched.

2.4 Magnetic Buoyancy

Now let us look at the stability of horizontal magnetic flux tube in a system with
gravity as in an astrophysical object. Suppose that the gas pressure outside the flux
tube ispexternal, the gas pressure inside ispinternal and the flux tube has a magnetic
field strengthB and thus a magnetic pressureB2/8π associated with it. Then for
pressure balance across the bounding surface of the flux tube:

pexternal= pinternal +
B2

8π
. (15)

It follows from the above equation that

pinternal < pexternal. (16)
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Fig. 1 A magnetogram image of the solar surface showing bipolar sunspot pairs. White denotes
positive polarity while black denoted negative polarity sunspots. Note how the bipolar sunspot pairs
have opposite polarity orientation in the two hemispheres with positive polarity sunspots appearing
on the right hand side (i.e., on the leading side in the direction of rotation – left to right) above the
equator and on the left (following side) below the equator. The small black and white patches and
the gray region outside of sunspots, denote the much weaker, diffuse field on the surface. The
formation of sunspots can be explained based on the concept of magnetic buoyancy.

Since pressurep = ρRT (whereR is the universal gas constant andT is the temper-
ature) the above relation implies that for a magnetic flux tube

ρinternalRTinternal < ρexternalRTexternal (17)

In situations where the plasma in the interior and exterior of the flux tube are in
isothermal condition, this means the density inside the flux tube would be less than
the density outside.

Therefore, any strong magnetic flux tube in the interior of astrophysical sys-
tems, would likely be less dense that its ambient surrounding. In the presence
of a gravitation field directed downward, this would translate to the flux tube
being buoyant (follows simply from Archimedes’ principle). The flux tube
would then tend to rise up against gravity. This concept of magnetic buoy-
ancy, which was first worked out by Eugene N. Parker (1955a), explains the
formation of bipolar sunspot pairs that are observed in the Sun (Figure 1).
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3 Formulating of the Kinematic Mean-Field Dynamo Problem

Plasma systems in astrophysical objects such as stars and planets often exist in a
state of vigorous turbulence and host large scale flows. This is especially true for
the those systems where convection, driven by temperature gradients, can support
plasma motions. The kinetic energy of the plasma in such a region can presumably
be used to feed a mechanism that converts it to magnetic energy. The subject that
attempts to understand this mechanism and seeks theoretical explanations for the
origin and evolution of astrophysical magnetic fields (or for that matter laboratory
magnetic fields - as long as it is generated in a plasma), is known as dynamo theory.

To address the dynamo generation of magnetic fields one would have ideally
liked to solve the complete set of MHD equations (Equations 5-10) simultaneously,
to search for an answer to how interacting velocity and magnetic fields sustain each
other and generate a global magnetic field. That, however, is an extremely formi-
dable task that is highly computer intensive and relatively less suitable for a physical
appreciation of individual processes at work in the system. We restrict ourselves to
the more tractable problem of kinematic dynamo theory – where the velocity field
is prescribed and one solves Equation 5 or 6 for the magnetic field evolution.

The first significant effort in this subject turned out to be a negative result
known as theanti-dynamo theorem. T. G. Cowling (1934) showed that an
axisymmetric velocity field (the simplest possible flow field in a astrophysical
body) cannot sustain an axisymmetric magnetic field (that is often observed).
Arguably the most important step in astrophysical dynamo theory was taken
by Parker (1955b) when he proposed that helical turbulent motions within
rotating plasma systems (which are inherently non-axisymmetric) can sustain
a magnetic field.

Parker’s original dynamo formulation was focussed towards explaining the origin
of the solar cycle and was largely intuitive. About a decade later, Steenbeck, Krause
and R̈adler (1966) put Parker’s ideas on a firm mathematical footing – developing
what is today known as the mean field theory of magnetohydrodynamics. Essentially
they showed that a crucial term for dynamo action - the mean-electromotive-force
(mean e.m.f.– essentially that process which converts the energy of plasma motions
to magnetic energy) – is generated as a result of averaging over the interactions of
the turbulent (or fluctuating) parts of the velocity and magnetic fields in a plasma.

In a turbulent system, the velocity and magnetic field can be written in terms of
the average and fluctuating parts:

v = v+v′, B = B+B′. (18)

Where the over-line indicates average and prime indicates fluctuating parts. Substi-
tuting Equation 18 in the general form of the induction equation (Equation 5) and
averaging the terms we get
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∂B
∂ t

= ∇× (v×B)+∇×E −∇× (λ∇×B), (19)

considering thatv′ = B′ = 0. HereE is themean e.m.fterm given by:

E = v′×B′. (20)

Themean e.m.fterm can be perturbatively evaluated using a scheme known as the
first order smoothing approximation(which requires a severe and possibly ques-
tionable truncation of the series expansion associated with themean e.m.fterm.).
Assuming that the turbulence is isotropic, this leads to

E = α B−β ∇×B, (21)

where
α =−τ

3
v′.(∇×v′) (22)

and
β =

τ
3

v′.v′. (23)

The termα, which is at the heart of the dynamoα-effect – represents the average
helical motions present in the plasma,τ is the correlation time for turbulence and
β signifies turbulent diffusivity. On substituting Equation 21 for themean e.m.f.in
Equation 19 and considering that the net magnetic diffusivity,η , is given by

η = λ +β , (24)

we finally get

∂B
∂ t

= ∇× (v×B)+∇× (αB)−∇× (η∇×B). (25)

Usually the turbulent diffusivityβ is much greater thanλ and in all subsequent
analysis from now on, we are going to denote the net magnetic diffusivity by the
term η . Equation 25 is known as the dynamo equation and describes the dynamo
generation of magnetic fields.

3.1 Evolution Equations for the Poloidal and Toroidal Fields

Most astrophysical objects of interest in dynamo theory, e.g., stars or planets are
spherical systems, which by virtue of their rotation, also sustain mostly axisymmet-
ric large-scale velocity and magnetic fields (although helical turbulent motions are
not axisymmetric, their net effect, averaged over large-scales can result in the cre-
ation of an axisymmetric field). It is advantageous then to formulate the dynamo
problem in terms of axisymmetric magnetic and velocity fields in spherical polar
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coordinates, expressed as

B = B(r,θ , t)eφ +∇× [
A(r,θ , t)eφ

]
, (26)

v = vp (r,θ)+ r sinθΩ (r,θ)eφ . (27)

whereB represents the toroidal component of the magnetic field (i.e., in the direction
of rotation),Bp = ∇×(Aeφ ) the poloidal component (in ther−θ meridional plane)
andA the vector potential for the poloidal field;Ω is the (rotational) angular velocity
(in theφ direction), andvp = vrer +vθ eθ is the meridional circulation (in ther−θ
plane). We substitute Equations 26 and 27 in the dynamo equation (Equation 25), to
get the two coupled equations:

∂A
∂ t

+
1
s
(vp.∇)(sA) = η

(
∇2− 1

s2

)
A+

αB, (28)

∂B
∂ t

+
1
r

[
∂
∂ r

(rvrB)+
∂

∂θ
(vθ B)

]
+∇η× (∇×B) = η

(
∇2− 1

s2

)
B

+s(Bp.∇)Ω +∇× (αBp), (29)

wheres= rsinθ . Equation 28 and Equations 29 are the evolution equations for the
poloidal and toroidal components of the magnetic field, respectively, which have to
be solved with the specification of boundary conditions appropriate for the system
under consideration. Often an amplitude-limiting quenching factor, that signifies the
non-linear feedback of the magnetic fields on the flows, is also included through a
parametrization of theα-effect such asα ∼ α0/[1+(B/Bquenching)2], whereα0 is
the amplitude of theα-effect andBquenchingis the field strength at which non-linear
feedbacks become important.

Let us now discuss specific terms of the toroidal and poloidal field evolution
equations to gain an insight into what physical processes they represent. The first
terms on the L.H.S. of Equations 28-29 describe how the magnetic field evolves in
time. This time evolution depends on the other (following) terms in the equations.

Advective Flux Transport by Meridional Circulation: The second terms on the
L.H.S. of the above equations represent the transport of magnetic flux by merid-
ional circulation, including stretching or compression effects due to expanding or
contracting flow fields. In the high magnetic Reynolds number regime, where the
magnetic flux in frozen in the plasma, these terms are quite important and magnetic
field transport is dominated by plasma flows – characterizing a regime often referred
to as the advection-dominated or circulation dominated regime.

Flux Transport Due to Diffusion Gradients: The third term on the L.H.S. of
Equation 29 involving the gradient ofη represents a form of magnetic transport
(also referred to as diamagnetic transport) in which the magnetic field is carried by a
velocity field (the latter’s magnitude being proportional to the gradient of diffusion)
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whose net effect is to carry magnetic fields from regions of strong diffusivity to
regions of lower diffusivity. Obviously, in the absence of any diffusivity gradient
(i.e., whenη is constant in space), this term vanishes.

Decay and Dispersal by Magnetic Diffusion: The first terms on the R.H.S. of
the above equations denote the effect of diffusivity on the magnetic field. Note that
diffusion disperses the field in such a way as to smooth out inhomogeneity. There-
fore diffusion does play a role in transporting magnetic fields in such systems. The
relative importance of diffusive flux transport is measured in terms of the magnetic
Reynolds number again; whenRm is low (equivalently when diffusive timescales
are shorter than the meridional flow timescale), diffusive dispersal dominates over
advective flux transport. However, as opposed to flux transport by meridional circu-
lation, diffusion also destroys the field (while being dispersed); this decay happens
over a diffusion timescale,τd, which we have already discussed before.

Dynamo Source Terms: There are three important source terms in the above equa-
tions which represent the creation of magnetic field, without which the magnetic
field of the system will simply decay away. These terms are described below.

The Ω -effect Toroidal Field Source: The second term on the R.H.S. of Equa-
tion 29 represents the stretching of poloidal field by non-uniform rotation to create
toroidal field. This process can be visualized in the following way. Imagine a pre-
existing poloidal field (in ther −θ plane) that is frozen in a plasma system which
is rotating at different speeds in theφ direction. Then that part of the poloidal field
which is rotating faster will be stretched out of ther−θ plane and into theφ direc-
tion, therefore generating a new toroidal field component. This toroidal field gener-
ation process is commonly referred to as theΩ -effect because it owes its existence
to the presence of non-uniform rotation.

Mean-Field α-effect Sources: The last terms on the R.H.S. of the above equations,
involving α (derived from themean e.m.f.), denotes the mean-field source terms.
Theα-effect term in Equation 28 denotes the twisting of toroidal field out of theφ
direction and into ther−θ plane creating a new poloidal component. While theα-
effect term in Equation 29 denotes the twisting of poloidal field out of ther−θ plane
and into theφ direction therefore creating toroidal field. Obviously, the presence of
helical motions is essential for these terms to exist.

3.2 Efficiency of the Dynamo Process: Dynamo Numbers

The efficiency of the dynamo mechanism can be estimated by the relative impor-
tance of the source and diffusive terms in the above equations. First lets consider the
relative importance of the two source terms on the R.H.S. of Equation 29 as com-
pared to the diffusive term through a simple dimensional analysis. Considering that
∇∼ 1/L (whereL is the typical length-scale of the system) the ratio of theΩ -effect
source term (second term on the R.H.S. of Equation 29) to the diffusive term (first
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term on the R.H.S.) is

CΩ =
(∆Ω)L2

η
(30)

and the ratio of theα-effect source term (third term on the R.H.S. of Equation 29)
to the diffusive term (first term on the R.H.S.) is

Cα =
αL
η

. (31)

Here,∆Ω represents the difference in angular velocity over the typical length-scale
L, andα andη denote typical magnitudes of theα-effect and diffusivity, respec-
tively, for the system.

WhenCΩ ¿ Cα (weak differential rotation), theΩ -effect source term (due to
differential rotation) in Equation 29 can be neglected and the only remaining source
terms in the poloidal and toroidal field evolution equations are both related to the
α-effect and the resultant dynamo system is known as aα2 dynamo. WhenCΩ
is comparable toCα , we have to keep all the three source terms and the resultant
dynamo system is known as aα2Ω dynamo. In the other extreme, whenCΩ ÀCα
(strong differential rotation), we can neglect theα-effect source term in Equation 29
(but not in Equation 28, where it is still the only source term!) and the resultant
system is known as aαΩ dynamo. The Sun has strong differential rotation, and
therefore, the solar dynamo is believed to be of theαΩ type.

If we take the product of these two dimensionless numbersCα andCΩ , we get
what is most commonly referred to as the dynamo number:

ND =
α(∆Ω)L3

η2 (32)

The dynamo number compares the relative efficiency of the source terms to
the diffusive terms in the dynamo equations. A high dynamo number (NDÀ 1)
for a specific system indicates that the dynamo process is efficient at creat-
ing magnetic fields in that system. On the other hand, a low dynamo number
(ND < 1) indicates that diffusion dominates over the source terms and there-
fore dynamo action is unlikely in that system.

4 Application to the Sun: The Solar Dynamo

The Sun’s magnetic field and its variability is the primary determinant of the electro-
magnetic environment of the heliosphere. The behavior of solar magnetic fields are
also well documented and the Sun’s internal properties well constrained. It is pru-
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Fig. 2 Latitude versus time plot of sunspots as well as the weak, diffuse field. The time evolution
of longitude-averaged weak, diffuse field is shown with colors depicting the magnitude of the field.
Overlaid on this are vertical black lines which connect the latitudinal distribution of sunspots at
a given time. This is often referred to as the sunspot butterfly diagram, as much an example of
the wonderful symmetry sometimes found in nature, as of our fixation with something beautiful.
The first plot, depicting the variation of sunspot eruption latitude with time in this manner, was
constructed by Maunder (1904).Image courtesy: Alexander G. Kosovichev.

dent then to take the Sun’s magnetic cycle as an example, and apply our knowledge
of MHD dynamo theory to study it.

4.1 Solar Magnetic Fields

Sunspots have been observed for centuries, with telescopic observations initiated by
Galileo Galilei in the early 1600s. The magnetic nature of sunspots have also been
thoroughly explored since the discovery of strong magnetic fields, on the order of
1000 Gauss (G), within sunspots by G.E. Hale in the early 20th century (Hale 1908).
Sunspots often appear in bipolar pairs (known as solar active regions) whose polarity
orientation is opposite in the two hemispheres. These bipolar sunspot pairs have a
systematic tilt that increases with latitude in both the hemispheres – a phenomenon
termed as Joy’s law (Hale et al. 1919). Many of these properties can be identified in
Figure 1. Years of sunspot observations have now firmly established that the sunspot
cycle has an average period of 11 years, with large amplitude fluctuations. At the
beginning of a new cycle, sunspots start appearing at about40◦ latitude and with the
progress of the cycle more and more sunspots appear at lower and lower latitudes.
At the end of 11 years, a new cycle starts with bipolar sunspot pairs which have
opposite magnetic polarity to that of the previous cycle, appearing again at about 40o

latitudes. Thus, if one considers not only the number of sunspots but also their sign,
the full cycle constitutes 22 years. Only after the development of the magnetograph
by Babcock and Babcock (1955), it became possible to study the much weaker
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Fig. 3 Some representative streamlines of the solar meridional circulation are shown in black
contours with arrows indicating the direction of flow. The background in color depicts an analytic
fit to the solar internal rotation profile. Deep red indicates faster rotation, while blue indicates
slower rotation. The two concentric dashed lines indicate the boundary of the tachocline – the
region of strong radial shear in the rotation near the base of the solar convection zone. The domain
shown is a meridional cut of the solar interior extending from0.55R̄ to R̄ (whereR̄ is the solar
radius) and from the north (top) to the south (bottom) pole.

magnetic field that is distributed on the solar surface outside of sunspots. This field
is of the order of 10 G and is concentrated in large unipolar patches (possibly within
unresolved magnetic fibrils) that migrate poleward with the progress of the solar
cycle (Bumba and Howard 1965; Howard and LaBonte 1981). This weak, diffuse
field reverses its polarity (near the poles) at the time of solar maximum (the phase
when the maximum number of sunspots are seen on the solar surface). It turns out
that this polarity reversal also happens at intervals of 11 years and this shows that
the cycle of the weak, diffuse field, is intimately connected to the sunspot cycle.

Figure 2 captures both the sunspot cycle as well as the cycle of the weak, diffuse
field in one unified picture. The equatorward propagation of the sunspot formation
belt as well as the poleward propagation of the weak, diffuse field is clearly discern-
able. Note also that the weak, diffuse field near the poles reverses its polarity at the
time when the maximum number of sunspots are seen on the solar surface.

4.2 Large-Scale Solar Flows

Observations of small magnetic features on the solar surface show that they seem
to be “carried” by a axisymmetric surface flow. An estimate of this surface flow
velocity is possible by following the motions of these surface features and doppler
shift measurements. These estimates point out that there is a markedly poleward
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directed flow (from the equator) on the surface of the Sun. This largely axisymmetric
flow in the meridian plane is referred to as the meridional circulation. With the
development of helioseismic techniques such as ring-diagram analysis and time-
distance helioseismology, it has became possible to study this flow more accurately.
It is found that this poleward meridional flow pervades till at least, the outer 15%
of the Sun (Giles et al. 1997). Various studies place the magnitude of this flow
somewhere in between 10 m s−1 – 25 m s−1. While, as yet, it has not been possible
to observe a meridional flow in the solar interior, it follows from mass conservation
that there should be an equatorward counter-flow somewhere near the base of the
SCZ. Figure 3 shows a possible profile of this meridional circulation in the solar
interior, although, at this writing, there is no consensus on the exact location of the
equatorward counterflow.

It has been known for years that the Sun rotates differentially with the equator
rotating faster than the poles. Helioseismology has now mapped the internal so-
lar rotation as well (Charbonneau et al. 1999). The rotation varies with latitude in
the upper 30% of the Sun - with the rotation rate increasing with decreasing lati-
tude. Below the base of the solar convection zone (SCZ) this latitudinal variation
in the rotation changes over into a radial variation over a thin region - termed as
the tachocline. Beneath the tachocline, the radial variation falls off, with the radia-
tive interior rotating more or less uniformly (see Figure 3 for an analytic fit to the
helioseismically determined solar internal rotation profile).

4.3 Understanding the Solar Cycle

Having described the observable properties of the solar cycle lets now summarize
the current state of our understanding of the solar dynamo mechanism. For illustra-
tive purposes, lets assume that we have a large-scale north-south oriented poloidal
magnetic field in the solar interior. Due to the differential rotation, specifically the
equator rotation faster than the poles, this poloidal field would be stretched out more
near the equator (in the direction of rotation) creating a toroidal field. It is easy to see
that this stretching would create opposite directed toroidal fields in the two hemi-
spheres. With the discovery of the tachocline – the region of strong radial shear at
the base of the SCZ, it is now fairly certain that the strong toroidal component of the
solar magnetic fields are stored and amplified there. Given that the tachocline lies in
a region of sub-adiabatic temperature gradient (also known as the overshoot layer),
where magnetic buoyancy is suppressed, this storage of magnetic fields is possible
there (Spiegel & Weiss 1980; van Ballegooijen 1982).

Very strong magnetic flux tubes, perhaps mediated via overshooting convection,
can however come out of this “stable” layer. Once out in the convection zone, these
magnetic flux tubes are subject to magnetic buoyancy (a concept we have outlined
earlier in Section 2.4) and they rise up radially to erupt through the surface as bipolar
sunspot pairs. Obviously in one of the spots the magnetic field is directed outward
while in the other it is directed inward and thence their bipolar nature. Also, since the
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Fig. 4 Theoretically simulated solar butterfly diagram (y-axis denotes solar latitude and x-axis de-
notes time in years) from a recent dynamo model based on the Babcock-Leighton idea for poloidal
field generation (from Chatterjee, Nandy & Choudhuri 2004). The background shows contours of
diffuse radial field. The dashed contours are for negative radial field, whereas the solid contours
are for positive radial field. Sunspot eruption latitudes are denoted by symbols “o” and “+”, in-
dicating negative and positive toroidal field respectively. Note that many features of the observed
solar butterfly diagram (Figure 2) are well-reproduced by this model.

underlying toroidal field is directed in opposite directions in the two hemispheres,
bipolar sunspot pairs have opposite orientations in the northern and southern hemi-
spheres. Since the Sun is a rotating system, the buoyantly rising flux tubes are sub-
ject to the Coriolis force which results in the axis of the flux tubes acquiring a tilt
which is manifested in the observed tilt of bipolar sunspot pairs (see Figure 1).

It was initially thought that helical turbulent convection acts on the buoyantly
rising toroidal flux tube to twist them into ther−θ plane re-generating the poloidal
component of the magnetic field and this completing the dynamo chain (Parker
1955b). However, simulations of the buoyant rise of toroidal flux tubes show that
the field strength of these flux tubes have to be on the order of105 G at the base
of the SCZ to match observable properties such as emergence latitudes (Choud-
huri & Gilman 1987) and tilt angle distribution (D’Silva & Choudhuri 1993; Fan,
Fisher & DeLuca 1993). This field strength is an order of magnitude stronger than
the equipartition magnetic field strength (at which the energy in the fields and con-
vection are in equipartition). This suggests that the mean-field dynamoα-effect
powered by helical turbulent convection (discussed in Section 3) will get quenched
and be ineffective in twisting such strong fields. Therefore alternative possibilities
have to be explored. One of these alternative is an idea originally proposed by Bab-
cock (1961) and Leighton (1969); the decay of tilted bipolar sunspot pairs, mediated
via diffusion and meridional circulation would preferentially carry a net flux to the
polar regions, reversing the older polar field and building up a new cycle poloidal
field. This effect is actually observed, and has been extensively used in used in re-
cent dynamo models to explain many observed features of the solar cycle (see e.g.,
Choudhuri, Scḧussler & Dikpati 1995; Durney 1995; Dikpati & Charbonneau 1999;
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Nandy & Choudhuri 2002; Chatterjee, Nandy & Choudhuri 2004 and Yeates, Nandy
& Mackay 2008).

These dynamo models based on the Babcock-Leighton idea solve the two cou-
pled evolution equations for the poloidal and toroidal fields (Equations 28 and 29)
in the αΩ regime. However, both the mean-field source terms (the last terms in
these equations) are discarded. Instead a phenomenological source-term that is con-
centrated in the surface layers, is used for the poloidal field equation. This term is
parameterized to be mathematically similar to theαB term in the dynamo equa-
tions, but in spirit is very different as it does not involve averaging over small-scale
helical turbulence, neither does it invoke the first-order smoothing approximation.
A suitable computational algorithm for buoyancy is also prescribed that is used
to mimic the buoyant eruption of toroidal flux tubes (Nandy & Choudhuri 2001).
Meridional circulation plays an important role in these class of models in transport-
ing the poloidal field first poleward and then downward into the tachocline where
the strong toroidal fields are stored and amplified; the counterflow in the circula-
tion is also responsible for the equatorward propagation of the sunspot formation
belt. The meridional flow speed is believed to control the sunspot cycle period in
these class of models (Charbonneau & Dikpati 2000; Nandy 2004; Hathaway et al.
2004; Yeates, Nandy & Mackay 2008). In Figure 4, we present a simulated butterfly
diagram from one such dynamo model powered by the Babcock-Leighton idea for
poloidal field generation. We see that the large-scale features of the solar cycle are
fairly well-reproduced in by this class of solar dynamo models.

5 Concluding Remarks

My endeavor here has been to give a flavor of ideas and concepts in dynamo the-
ory. Given that this is directed towards students, who are possibly being exposed
for the first time to dynamo theory, I have concentrated on highlighting important
concepts in MHD. I have also laid down a pedagogical account of the development
of ideas in this subject, stressing particulary on its mathematical formulation. Fi-
nally, I have focussed on the solar cycle as a representative case study to illustrate
how the theoretical ideas come together to explain the solar dynamo mechanism. It
has to be stressed however that this is just a limited account of the subject. Those
desirous of a serious pursuit of dynamo theory are encouraged to consult other re-
lated works that give a more detailed account of this subject. Amongst these are
the books “Magnetic Field Generation in Electrically Conducting Fluids” (Moffatt
1978), “Cosmical Magnetic Fields” (Parker 1979), “The Physics of Fluids and Plas-
mas: An Introduction for Astrophysicists” (Choudhuri 1998) and the recent reviews
on the solar dynamo mechanism by Ossendrijver (2003) and Charbonneau (2005).
This effort will be well served if it is only the beginning, and inspires a more careful
and sustained effort at studying dynamo theory and perhaps researching some of its
outstanding issues; there are many!
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