
Spatial Expansion and Speeds of Type III Electron Beam Sources in the Solar Corona

Hamish A. S. Reid and Eduard P. Kontar
SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK; hamish.reid@glasgow.ac.uk

Received 2018 July 6; revised 2018 September 4; accepted 2018 September 30; published 2018 November 12

Abstract

A component of space weather, electron beams are routinely accelerated in the solar atmosphere and propagate
through interplanetary space. Electron beams interact with Langmuir waves resulting in type III radio bursts. They
expand along the trajectory and, using kinetic simulations, we explore the expansion as the electrons propagate
away from the Sun. Specifically, we investigate the front, peak, and back of the electron beam in space from
derived radio brightness temperatures of fundamental type III emission. The front of the electron beam travels at
speeds from 0.2c to 0.7c, significantly faster than the back of the beam, which travels at speeds between 0.12c and
0.35c. The difference in speed between the front and the back elongates the electron beam in time. The rate of
beam elongation has a 0.98 correlation coefficient with the peak velocity, in line with predictions from type III
observations. The inferred speeds of electron beams initially increase close to the acceleration region and then
decrease through the solar corona. Larger starting densities and harder initial spectral indices result in longer and
faster type III sources. Faster electron beams have higher beam energy densities, and produce type IIIs with higher
peak brightness temperatures and shorter FWHM durations. Higher background plasma temperatures also increase
speed, particularly at the back of the beam. We show how our predictions of electron beam evolution influences
type III bandwidth and drift rates. Our radial predictions of electron beam speed and expansion can be tested by the
upcoming in situ electron beam measurements made by Solar Orbiter and Parker Solar Probe.

Key words: solar wind – Sun: corona – Sun: flares – Sun: particle emission – Sun: radio radiation

1. Introduction

Solar electron beams, accelerated via magnetic instabilities
in the solar atmosphere, do not simply propagate scatter-free
through the solar corona and interplanetary space. They interact
with the background plasma, which results in them not
propagating at a constant velocity. One such resonant
interaction is the excitation of Langmuir waves through the
bump-in-tail instability (Ginzburg & Zhelezniakov 1958).
Electron beams and Langmuir waves are detected in situ
together (Gurnett & Frank 1975; Gurnett & Anderson 1976),
along with type III radio bursts which are generated via wave–
wave interactions by the Langmuir waves. Remote sensing type
III bursts at high frequencies provide information about
electron beam speeds in the solar atmosphere where in situ
measurements are not currently possible. The energy exchange
between the electron beam and Langmuir waves modifies the
electron distribution (e.g., Zaitsev et al. 1972; Magelssen &
Smith 1977; Mel’Nik & Kontar 1998; Kontar 2001a).

To estimate electron beam velocities via remote sensing, the
frequency drift rate ft of type III bursts is often used, where f is
the frequency. Because the plasma frequency decreases as a
function of distance from the Sun, the frequency drift rate
provides information about how fast the electron beam travels
through the heliosphere. Type III drift rates decrease in
magnitude as a function of decreasing frequency. This is
typically related to the decreasing magnitude of the background
electron density gradient at farther distances from the Sun
(Kontar 2001b; Ratcliffe et al. 2012). A power-law dependence
over four orders of magnitude was found by Alvarez &
Haddock (1973) combining results from numerous studies.

Drift rates have been reported to be slightly lower at higher
frequencies (e.g., Achong & Barrow 1975; Mel’Nik et al.
2011). They are usually found using the evolution of the peak
flux in time although the onset time is occasionally used. Type
III drift rates using the onset time have been shown to be faster
than when the peak time is used, which in turn are faster than
when the decay time is used (Reid & Kontar 2018). Type III
drift rates are also influenced by the radio emission mechanism
that converts Langmuir waves to radio waves and the
subsequent radio wave propagation from source to observer
(e.g., Kontar et al. 2017). However, in this work we concentrate
on how the beam dynamics influences the type III drift rate.
Velocities of electron beams deduced from type III bursts are

measured in fractions of the speed of light. Typical velocities
are between 0.2 and 0.5c (e.g., Wild et al. 1959; Alvarez &
Haddock 1973; Suzuki & Dulk 1985; Reid & Ratcliffe 2014)
although relativistic velocities (>0.6c) have been found in the
corona (Poquerusse 1994; Klassen et al. 2003). A recent study
by Reid & Kontar (2018) of 31 type III bursts estimated
velocities deduced from the rise, peak, and decay times of type
III bursts to be 0.2c, 0.17c, and 0.15c respectively. Exciter
speeds were found to be significantly lower in the inter-
planetary medium from type III bursts below 20MHz
(Fainberg et al. 1972; Dulk et al. 1987; Krupar et al. 2015;
Reiner & MacDowall 2015), going down to 0.1c or below.
Electron beams were found to decelerate on their way to the
Sun; a constant velocity was not a good approximation. Typical
deceleration values below 20MHz have been found around
10 km s−2 (Krupar et al. 2015).
While a single exciter velocity is typically attributed to

electron beams from type III bursts, the Langmuir wave-
generating beams have a broad distribution in energy space
(e.g., Zaitsev et al. 1972). The electron beam and the resonating
Langmuir waves can be described as a beam–plasma structure
using gas-dynamic theory (e.g., Ryutov & Sagdeev 1970;
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Mel’Nik 1995; Kontar’ et al. 1998; Mel’Nik et al. 1999; Kontar
& Mel’Nik 2003). The electron and Langmuir waves travel
together through a constant exchange of energy, the electron
distribution relaxing to a plateau in velocity space between vmin

and vmax. It was shown that the resulting beam–plasma
structure (Mel’Nik et al. 1999; Kontar & Mel’Nik 2003)
moves through space with the average velocity of the electrons
vbps=(vmax+ vmin)/2, where vmax is the speed of the electrons
at injection and vmin is the minimum electron speed. Electron
beams injected at the Sun are not necessarily Maxwellian, but
the collective behavior exhibited by the beam–plasma structure
helps explain why near-constant beam velocities are inferred
from type III bursts (e.g., Mel’Nik et al. 1999; Kontar &
Mel’Nik 2003).

Simulations of electron beams propagating through the solar
corona and interplanetary space, interacting with Langmuir
waves, have been carried out for decades (e.g., Takakura &
Shibahashi 1976; Magelssen & Smith 1977). For simulations
over significant distances, the quasilinear description (e.g.,
Vedenov 1963) is typically used. From observations of
electrons in situ at 1 au (Lin et al. 1981; Krucker et al. 2007)
and from estimations from X-ray observations (Holman
et al. 2011), a power-law electron beam is commonly assumed
as the injection function. Previous numerical studies (e.g., Reid
& Kontar 2013; Li & Cairns 2014; Ratcliffe et al. 2014) have
shown that, over large distances of a few solar radii or more,
the velocity range of electrons that generates the bulk of the
Langmuir waves decreases. This is consistent with the decrease
in type III drift rate as a function of frequency (Fainberg
et al. 1972; Krupar et al. 2015).

If electrons propagated freely, the beam length would
increase through velocity dispersion as a beam consists of
electrons with a range of velocities. As faster electrons outpace
slower ones, the fastest electrons will travel a distance of
vmaxΔt while the slowest will travel a distance of vminΔt.
The electron beam length will increase over time by
(vmax−vmin)Δt over some time Δt. However, it appears that
free electron propagation is an oversimplification, and electron
velocities will change during propagation through wave–
particle interactions and/or pitch-angle scattering. How
electron beam length thus develops as a function of time is
poorly understood.

The type III parameter most associated with the electron
beam length is the instantaneous bandwidth: the width in
frequency between the minimum and maximum frequency at
any point in time. The type III bandwidth provides information
about where the electron beam is able to radiate at any given
time; this has not been extensively studied in the past. Hughes
& Harkness (1963) defined the bandwidth from the leading
edge to the highest frequency, finding a bandwidth of 100MHz
from a leading edge of 100MHz. Mel’Nik et al. (2011) defined
the instantaneous bandwidth as the half-power bandwidth,
finding a value of 15MHz around 18MHz for powerful type
III bursts. To account for asymmetric bandwidth profiles, Reid
& Kontar (2018) defined the bandwidth using the rise and
decay times of the type III emission to estimate fmin and fmax

for each point in time. The instantaneous bandwidth Δf=
fmax−fmin at the frequency with roughly peak intensity.
Bandwidths of 20MHz were found around 50MHz. Both
Mel’Nik et al. (2011) and Reid & Kontar (2018) found the
bandwidth to vary roughly as Δf=0.6f.

In this study we investigate both the velocity of electron
beams and their length as they travel through the solar corona.
We start by defining different regions of the electron beam: the
front, peak, and back. We then show in Section 3 how these
parameters evolve with time and what causes their evolution.
How the change in the initial beam parameters affects the beam
velocity and length is shown in Section 4, along with the effect
of the background plasma electron temperature. We explore the
effects on type III properties from injecting electron beams with
different parameters in Section 5. The results are discussed in
Section 6, with conclusions provided in Section 7.

2. Simulation Model

2.1. Kinetic Model

To investigate the length and velocity of an electron beam
we used a 1D self-consistent kinetic model (Kontar 2001c) of
the electron distribution function f (v, r, t) (electrons cm−4 s)
and the spectral energy of Langmuir waves W(v, r, t)
(erg cm−2). The model calculated the 1D propagation of the
electrons along the direction of the guiding magnetic field in
the WKB approximation, where waves are treated as quasi-
particles interacting resonantly (ωpe= kv, where ωpe is the
plasma frequency) with the electrons.
An in-depth description of the kinetic equations, source

model, and background plasma model can be found in Reid &
Kontar (2017). The same background plasma density model,
obtained using the equations for a stationary spherical
symmetric solution (Parker 1958) with a normalization factor
by Mann et al. (1999), is used in all simulations. No density
fluctuations are added. The source function parameters do vary
between simulations. The source function is given by
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constant that sets the beam density nb [cm−3]. The constant
t p= -( )At

1 normalizes the integral of the exponential
involving time to one. The characteristic variables that define
the behavior of the source function in velocity, distance, and
time are α, d (cm), and τ (s), respectively.

Figure 1. Time profile of the radio brightness temperature deduced from the
Langmuir waves at 30 MHz or 0.76Re. The rise, peak, and decay times
corresponding to the peak value and half-width half-maximum are indicated.
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2.2. Radio Emission

We approximate a dynamic spectrum of fundamental
emission from the Langmuir wave spectral energy density
assuming a saturation level of plasma emission (Melrose 1980;
Tsytovich & ter Haar 1995; Lyubchyk et al. 2017). Beam-
driven Langmuir wave growth causes WL?WS, where WL

and WS are the spectral energy density of Langmuir waves
and ion-sound waves, respectively. The nonlinear decay
 +L T S causes exponential growth of ion-sound waves

(e.g., Melrose 1980). This will increase both WS and the
brightness temperature TT until such time as WS?WL. At this
point the process saturates at the level

w
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where ks is the wavenumber of the ion-sound waves, ωL, ωT are
the Langmuir wave and electromagnetic wave angular
frequencies, and kb is the Boltzmann constant. If we assume
that ωT≈ωL and ks≈kL, then for η=(2π)2 we obtain
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To obtain the brightness temperature at each position
(frequency), TT(r, t), we use the peak value of TT(k, r, t) for
each point in space and time. The spread in k (and consequently
frequency) is small for each point in space and the peak value
gives very similar results to using the mean value of TT(k, r, t)
as a function of k.

3. Electron Beam Dynamics

When diagnosing electron beam dynamics from type III
radio bursts, we are getting information about electrons that are
undergoing significant wave–particle interactions with the
Langmuir waves, which subsequently drive the radio emission.
The bulk of the energy in the system is contained within the
electrons and the Langmuir waves; the radio emission is not

energetically important. Therefore, the motion of the electron
beam through the heliosphere can be modeled using the
electrons and Langmuir waves alone.
In this work, we investigate the electron beam using the time

profile of the fundamental radio emission estimated from the
Langmuir waves (Section 2.2). For each position (frequency) we
find the time, tpeak, at which the radio brightness temperature is
highest. We then find the times which correspond to the half-
width half-maximum of the intensity profile, trise and tdecay, of
TT(r, t). Figure 1 shows a sample time profile of TT(r, t) at
30MHz (0.76 Re) using the simulation parameters given in
Table 1, illustrating trise, tpeak, and tdecay. For each time t, the peak
of the electron beam is defined by the position where t≈tpeak.
Similarly, the front and back of the electron beam are at positions
where t≈trise and t≈tdecay, respectively.

3.1. Electron Beam Properties

We initially inject an electron beam into the solar corona
using the source function given in Equation (1) with parameters
given in Table 1. The background temperature is set as
1MK, giving a thermal velocity of = =v k T mb e eth

´ -3.9 10 cm s8 1. The minimum energy (velocity) is suffi-
ciently close to the thermal distribution that the Langmuir
waves are significantly damped. The maximum energy
(velocity) is low enough to ignore relativistic effects (the
Lorentz factor is at most 1.4), but high enough to cover the
bulk of relevant energies for electrons that induce type III
bursts. The spectral index is typical for accelerated electron
beams, found from X-ray observations (Holman et al. 2011).
The size and height are within the range of estimates found
from X-ray and radio flare observations (Reid et al. 2014). The
density ratio is given at the source height and corresponds to an
initial background electron density of ne=3×109cm−3

(500MHz) and an initial beam density of nb=107cm−3.
Figure 2 shows the dynamic spectrum of fundamental

emission produced by the beam-driven Langmuir waves. The
general trend of increasing intensity with decreasing frequency
is shown (e.g., Dulk et al. 1998; Krupar et al. 2015; Reid &

Table 1
Initial Beam Parameters for the Electron Beam Injected into the Solar Corona

Energy Range Velocity Range Spectral Index Injection Time Beam Size Source Height Density Ratio

0.28–125 keV 2.6–54vth α=8.0 τ=0.001 s d=109 cm h=3×109 cm nb/ne=0.003

Figure 2. Type III brightness temperature dynamic spectrum assuming fundamental emission and a saturation of ion-sound waves, found using Equation (3) and an
initial electron beam described in Table 1. The rise, peak, and decay times from the FWHM at each frequency are indicated by black dashed lines.
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Vilmer 2017). The rise, peak, and decay times, found from the
full-width half-maximum (FWHM) of the brightness temper-
ature at each frequency are indicated.

To demonstrate how the rise, peak, and decay times of the
radio emission correspond to the front, peak, and back of
the electron beam, phase space snapshots of the electron

Figure 3. Electron flux and Langmuir wave spectral energy density at 4, 6, and 8 s after injection for the initial electron beam parameters given in Table 1. The
corresponding front, peak, and back of the electron beam are shown by horizontal dashed lines, found from the derived radio brightness temperature of fundamental
type III emission.
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distribution function, in units of electron flux (cm−2 s−1 eV−2),
and the Langmuir wave spectral energy density (erg cm−2) are
shown in Figure 3. We have indicated the front, peak, and back
of the beam as horizontal dashed lines.

The radio emission indicates the bulk of the electron beam in
phase space, except from two parts. The first part is the very
front of the electron beam. The small electron flux causes the
growth rate of Langmuir waves to be insignificant compared to
the background level. These electrons consequently do not
diffuse in velocity space and undergo ballistic transport in our
model. The second part is the back of the beam. The electron
velocities are so low that Langmuir waves are strongly Landau-
damped by the background plasma.

The evolution of the front, peak, and back of the electron
beam, found from radio emission, are presented in Figure 4 as a
function of time. We can apply a linear fit to the positions as a
function of time after 3.5 s to approximate the velocities of the
front, peak, and back of the electron beam. We find that the
front travels faster than the peak, which in turn travels faster
than the back, as one might expect. The fits are shown in
Figure 4 along with the derived velocities.

We define the length of an electron beam as the distance
between the front and back. The length increases as a function
of time, shown in Figure 5. A linear fit to the length as a
function of time gives a constant expansion velocity (increase
in length as a function of time). The expansion velocity, Δv, is
essentially the difference between the velocity at the front of
the beam vf and that at the back of the beam vb such that
Δv≈vf−vb.

3.2. Electron Beam Velocity Evolution

The velocity of the front, peak, and back of the electron
beam is not actually constant but changes as a function of time,
shown in Figure 6. To approximate the velocity from Figure 4
we used the gradient of a straight-line fit over 30 points in
space, pertaining to a distance of 3×109 cm, with the fitting
errors shown. After around 4 s, the velocity of the front and the
peak of the beam increases as a function of time. This is related
to a gradual increase in the velocity of the electrons that
resonate with Langmuir waves, caused by physical processes
including density inhomogeneity, radial expansion, and the
decreasing background electron density gradient. The increase
in velocity does not continue throughout the solar wind and
will begin to decrease after the electron beam becomes more
dilute at farther distances from the Sun. The velocity of the
back of the beam decreases as a function of time. Conversely,
this is related to a gradual decrease in the velocity of electrons
that resonate with the Langmuir waves.

The velocity profile before 4 s is more complex, showing a
sharper increase and subsequent decrease in velocity. At the
earliest times the electrons that generate a substantial amount of
Langmuir waves are at lower velocities. As t increases, these
electrons are at higher velocities until some time tp. At times
t>tp, the velocities of the electrons that produce substantial
Langmuir waves decrease. The change in the relevant velocities
of the electrons that produce the highest Langmuir wave
spectral energy density is demonstrated in Figure 7. The
electron flux and Langmuir wave spectral energy density as a
function of velocity at different times are shown, where
tp≈3.2 s. The positions, r, of f (v, r, t), and W(v, r, t)
correspond to where the spectral energy density is at a
maximum (peak of the electron beam). For the different times

t=2.1, 3.2, and 6.3 s the positions are r=0.25, 0.39, and
0.75Re, respectively.
The motion of electrons and Langmuir waves can be

described as a beam–plasma structure using gas-dynamic
theory (e.g., Ryutov & Sagdeev 1970; Kontar et al. 1998;
Mel’Nik et al. 1999). Electrons are able to fully relax to a
plateau in velocity space, then the beam–plasma structure

Figure 4. Position of the front, peak, and back of the electron beam as a
function of time. The dashed lines are linear fits to these positions from 3.5 to
8 s, with the gradient providing a constant velocity, indicated in the plot legend.

Figure 5. Length of the electron beam, found from the distance between the
front and back. The dashed line is a linear fit to the length from 4 to 8 s, with
the gradient providing a constant velocity for the beam expansion, indicated in
the plot legend.

Figure 6. Velocity of the front, peak, and back of the electron beam, derived
from Figure 4. The dashed line is a linear fit to the velocities from 4 to 8 s, with
the gradient providing a constant acceleration, indicated in the plot legend.
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moves through space with the mean velocity of the electrons
vbp=(vmax+ vmin)/2, where vmax and vmin are the minimum
and maximum velocities within the plateau. If the electrons
have not fully relaxed then the mean electron velocity within
the beam can be found using

ò

ò
=¯ ( )

( )

( )
( )v r t

f v r t vdv

f v r t dv
,

, ,

, ,
. 4

v

v

v

v
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max

We show in Figure 8 both the mean electron velocity and the
velocity where the electron distribution f (v) has a maximum, at
the position corresponding to the peak brightness temperature,
as a function of time. We also show the velocity derived from
the motion of the peak brightness temperature.

At the earliest times, before 3 s, the peak velocity is
significantly higher than either the maximum or mean velocity
of the electrons that form the plateau. As explained above, this
is because the peak velocity is tracking the position of the peak
brightness temperature. Indicated in Figure 7, this position
increases with time not just because of electron movement
through space but also because the related electron beam is at

higher (and then lower) velocities at different points in time.
The apparent motion is thus faster than the velocity of the
electrons generating the Langmuir waves.
At later times the peak velocity is similar to that of the electrons

resonating with the Langmuir waves. There is a tendency to
propagate at the same velocity as the maximum velocity of
electrons within the plateau at the same spatial location. This is
different from what is expected from gas-dynamic theory, which
predicts the mean velocity of electrons would track the motion.
The anomalous point around 8.5 s is just related to the
discretization of the grid in velocity space, and the sharp, localized
increase in velocity should be spread over a longer time frame.

4. Electron Beam Parameters

The number density of electrons at specific velocities (the
phase-space density) of the injected electron beam has a
significant effect in dictating how fast the electron beam will
travel through the coronal and interplanetary plasma. Typically,
the more high-energy electrons in the beam, the faster it will
go. Two key beam parameters that dictate this are the initial
spectral index α and the initial beam density nb.
In this section we will explore how the velocity of the front,

peak, and back of the electron beam (vf, vp, vb, respectively) are
affected by α and nb. To estimate how they affect beam
propagation we varied the initial spectral index such that
6�α�10 and the initial beam density such that
10−1.5�nb/ne�10−3.5, where ne=3×109cm−3 at the
injection site. The rest of the beam parameters are the same as
Section 3 and are given in Table 1.
As shown in Figure 6, the velocity of the electron beam varies

as a function of distance. To compare simulations with a single
velocity, we find the average velocity over the distance range
that corresponds to plasma frequencies 30–70MHz. These
frequencies relate to distances 3.0×1010–5.3×1010cm or
0.44–0.76Re. We find the average velocity from the gradient of
a linear fit to distance as a function of time.

4.1. Electron Beam Velocities

The velocity at the front of the electron beam is shown in
Figure 9 for different values of α and nb. The velocity increases
as the spectral index decreases and the initial beam density

13

Figure 7. Electron flux and Langmuir wave spectral energy density as a function of velocity. The different times show the increase and subsequent decrease in wave–
particle resonant velocities.

Figure 8. Peak velocity of the electron beam from Figure 6 overplotted on the
maximum and mean velocities in the electron distribution function as a
function of time. The peak velocity appears to track well the maximum electron
velocity in the plateau at the same point in space.

6

The Astrophysical Journal, 867:158 (15pp), 2018 November 10 Reid & Kontar



increases. Both parameters show that increasing the number of
electrons at velocities higher than the thermal speed controls
how fast the front of the electron beam moves. The front
velocity, vf, when nb=107cm−3 and α=6 is slightly lower
than we might expect because substantial Langmuir waves are
generated by electrons with velocities vmax=0.7c, and would
likely be generated by higher-velocity electrons, if included in
the simulation.

The peak velocity, vp, of the electron beam changes as the
initial density and spectral index of the electron beam are
altered, shown in Figure 9. Similar to vf, vp increases for
smaller initial spectral indices and larger initial beam densities.
The size of the peak velocities are smaller than the front
velocities, such that the mean±the standard deviation of vp/vf
is 0.80±0.06.

The velocity of the back of the beam, vb, varies in a similar
manner, increasing with decreasing initial spectral index and
increasing initial beam density, shown in Figure 9. The back
velocity is smaller such that vb<vp<vf. The mean ratio of
vb/vp is 0.67±0.08 while the mean ratio of vp/vf is
0.54±0.1. The variation in the back velocity as the initial
beam parameters are changed is much less than the front and
peak velocities. The back velocity is heavily dependent on the
thermal velocity of the background Maxwellian plasma; we
investigate this dependence in the next section.

The mean width of the electron distribution function when
the front, peak, and back velocities are calculated are displayed
using error bars in Figure 9. The width, dv, is defined using the

full width, 10% maximum on account of the sharp decrease in
the distribution function afterward (see Figure 7). Defining dv
using the FWHM reduces the width by 2, or 1.5 for the back
velocities. The ratio dv/v gives an indication of how much
quasilinear diffusion the beam has undertaken. Mean ratios for
the front, peak, and back of the beam are 10%, 20%, and 40%,
respectively. The low value for dv/v indicates that the beams
are only weakly relaxing, in comparison to the full plateau
which is assumed using gas-dynamic theory. The mean ratio
increases toward the back of the beam on account of the higher

Figure 9. Apparent velocity of the front, peak, back, and expansion of the beam as a function of spectral index for beam densities 106, 107, and 108cm−3. The
velocities are found using a linear fit of distance and time between 30 and 70 MHz. The width of the error bars indicates the mean width of the electron distribution
function when the front, peak, and back velocities are calculated.

Figure 10. Expansion velocity as a function of peak velocity, using the results
shown in Figure 9.
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beam densities at lower velocities, making the quasilinear
diffusion quicker and hence more pronounced.

The change in beam length as a function of time, the
expansion velocity Δv≈vf−vb, is shown in Figure 9. It is
not surprising that we findΔv having similar behavior to vf and
vb, increasing with higher initial beam densities and lower
initial spectral indices.

The expansion velocity has a linear correlation with the peak
velocity, shown in Figure 10, with a Pearson correlation
coefficient of 0.98. As the peak velocity increases, the expansion
velocity increases. The latter tends to zero around vpeak=0.1c.
Around this velocity, Landau damping from the 1MK back-
ground plasma suppresses any wave generation by the electron
beam; this is the reason why vpeak does not go any lower.

4.2. Beam Velocity Evolution

In the previous section we investigated beam velocities by
averaging between 70 and 30MHz to obtain a single velocity
for comparison purposes. However, the beam velocity is not
constant with either time or space, as shown in Figure 6. It
varies, depending on the minimum and maximum electron
velocities that are important for the beam–plasma interaction
with Langmuir waves.

We show in Figure 11 the velocity evolution of the peak
brightness temperature as a function of frequency for
simulations with different initial spectral indices and beam
densities. The increase and subsequent decrease in beam
velocity at frequencies above 100MHz is consistent with all
simulations, with the explanation given in Section 3.2.

At frequencies below 100MHz, we observe an increase in
the velocity of the peak brightness temperature for some
simulations but not others. For the simulations where the
number of high-energy electrons (at deca-keV energies) is
higher, due to a higher beam density or a lower spectral index,
the velocity tends to increase and then decrease. For example,
when α=7 and nb=107cm−3, there are enough deca-keV
electrons such that increasingly higher electron velocities
become relevant to the beam–plasma structure with distance.
This occurs until a point where the decrease in beam density
from the expanding flux tube starts making wave generation
more difficult. Increasingly lower electron velocities then
become more relevant and the velocity of the peak brightness
temperature decreases. For the simulations where, e.g., α=10
and nb=107cm−3, this point occurs before 100MHz and we

do not see a significant change in the velocity. There are some
anomalous points in Figure 11 at frequencies below 20MHz,
again related to the discretization of the grid in velocity space,
and the sharp, localized increase in velocity should be spread
over a wider frequency band.
An increase in the inferred beam velocity from type III bursts

has recently been reported by Mann et al. (2018) using LOFAR
imaging observations below 100MHz. They derive velocities
from the onset time of the type III burst at different frequencies
and find huge increases around 30MHz, with some bursts
reported as superluminal. While the effect we describe above can
increase the derived beam velocity from radio bursts, and could
play a role in the findings of Mann et al. (2018), it is not likely to
explain three-fold increases in velocities, nor provide super-
luminal velocities. While refraction effects are considered, radio
wave scattering at LOFAR frequencies has a more dominant
effect (see Kontar et al. 2017), is likely to increase the derived
beam speeds, and could explain the apparent beam acceleration.

4.3. Thermal Velocity

The background plasma temperature plays a significant role
in governing the largest velocity at which Langmuir waves are
damped by the background plasma. Langmuir waves are
heavily Landau damped close to the thermal velocity. Our
previous simulations used a background temperature of 1MK,
giving a thermal velocity of vte=3.9×108 cms−1 or 0.013c.
To show the effect of the background temperature, Figure 12
presents a snapshot of the Langmuir wave spectral energy
density for four different simulations using the same initial
electron beam parameters (α= 6, nb= 106 cm−3) but with
different background temperatures of 1, 2, 4, and 8 MK. This
corresponds to vte=0.013, 0.018, 0.026, and 0.037c, respec-
tively. It is clear from Figure 12 that a higher background
temperature increases the minimum velocity where a sub-
stantial level of Langmuir waves are generated.
Higher background temperatures increase the velocities of

the back of the electron beam, shown in Figure 13. This is
because slower electrons are no longer able to generate
substantial levels of Langmuir waves in the presence of high
Landau damping. For temperatures of 1MK, the back of the
beam relates to Langmuir waves with phase velocities around
0.25c, well above their lowest phase velocities. At temperatures
of 8MK, the back of the beam relates to Langmuir waves with
the lowest phase velocities. This behavior is captured by the

Figure 11. Beam velocity as a function of plasma frequency. Left: the initial spectral index α varies from 7 to 10 with an initial beam density of nb=107cm−3.
Right: the initial beam density varies from nb=106cm−3 to nb=108cm−3 with an initial spectral index of α=8.
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ratio of vb/vte which is 20 for Te=1 MK and 9.4 for Te=8
MK. Conversely, the front of the beam is not influenced very
much by the background temperature as the corresponding

Langmuir waves at high phase velocities are not damped by the
background electron distribution.

5. Type III Bandwidth and Drift Rate

5.1. Type III Bandwidth

The instantaneous bandwidth of a type III burst is the width
in frequency space at any single point in time. In the context of
the electron beam, this relates to the range of plasma
frequencies within the beam length, i.e., the difference in
plasma frequency between the position of the front and the
back of the electron beam.
Figure 14 shows how the bandwidth is different for different

initial spectral indices. The frequency associated with each
bandwidth is the background plasma frequency at the location
of the peak of the electron beam. For all frequencies, the
bandwidth is higher for lower initial spectral indices. This is
expected from Figure 9 as a lower initial spectral index creates
a longer beam. There is also a systematic decrease in the
bandwidth as the frequency decreases. This is related to the
bulk decrease in magnitude of the background electron density
gradient. Over nearly an order of magnitude in frequency the
change in bandwidth from the spectral index is reasonably

Figure 13. Front, peak, and back velocities for an electron beam traveling
through background plasma with temperatures of 1, 2, 4, and 8 MK. Velocities
are found using a linear fit of distance and time between 20 and 35 MHz,
corresponding to 40–70 MHz assuming harmonic emission.

Figure 12. Langmuir wave spectral energy density after 4 s of beam propagation. The background temperature varies as 1, 2, 4, and 8 MK from top left to bottom
right. The front, peak, and back of the electron beam, found from the resulting radio brightness temperature, are shown by the horizontal dashed lines. Note the
decrease in Langmuir waves at lower phase velocities for higher background temperatures.
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significant, with the bandwidth at 100MHz when α=9 being
the same as that at 40MHz when α=7.

The bandwidth is affected by the initial beam density, shown
in Figure 14, with a higher initial beam density increasing the
bandwidth. Again the change in bandwidth from the initial
beam density is significant in comparison to that from the
decrease in magnitude of the background electron density
gradient at lower frequencies.

5.2. Type III Drift Rate

The drift rate of type III bursts can be found using the
variation of frequency with time at a given intensity point (e.g.,
time of peak intensity in each frequency channel), found using
the rise, peak, or decay times in the type III dynamic spectra,
relating to the motion of the front, peak, or back of the electron
beam as a function of time. Figure 15 shows the drift rate
inferred from the rise, peak, and decay times of the
fundamental emission calculated from the Langmuir wave
spectral energy density. The large difference in magnitude
between the front and back drift rates is evident, with the front
clearly drifting faster than the back, as expected.

The initial parameters also govern the magnitude of the drift
rate as a function of frequency. Figure 16 shows how the
inferred drift rate changes when the initial spectral index is
varied. Similar to the bandwidth, the magnitude of the drift rate
decreases as the initial spectral index is increased. Compared to
the bandwidth, the initial spectral index is less significant for
the drift rate compared to the decrease in drift rate from the
reduced background electron density gradient at lower
frequencies. For example, the drift rate at 100MHz when
α=9 is the same as the drift rate at 70MHz when α=7.

The initial beam density also affects the drift rate, with a
smaller initial beam density leading to a lower drift rate
magnitude, shown in Figure 16. Again, the change in drift rate
from the initial beam density is less than that from the bulk
decrease in background density density gradient at distances
farther from the Sun. For example, the drift rate at 100MHz
when nb=106 is the same as that at 70MHz when nb=108.

The drift rates around 100MHz are very similar to those
derived from type III radio observations at similar frequencies
by Alvarez & Haddock (1973). However, a power-law fit to the
peak curve in Figure 15 gives a spectral index of 1.52, lower
than the 1.84 found in Alvarez & Haddock. The drift rates are
slightly higher than those given by Achong & Barrow (1975),
between 26 and 36MHz, and by Reid & Kontar (2018),

between 30 and 70MHz. The spread in drift rates from the
different electron beam parameters is similar to the spread in
values presented in both studies. Moreover, the spectral index
of 1.52 is closer to those presented in the latter two studies,
with a larger spectral index found from the back of the beam
matching the results in Reid & Kontar (2018).
Using numerical simulations, a decrease in the magnitude of

the drift rate has previously been shown by Li & Cairns (2013)
at 120 and 80MHz for an increasing initial power-law spectral
index. Similarly, Kontar (2001b) showed that decreasing the
beam density or the characteristic velocity of a Maxwellian
electron beam decreases the magnitude of the drift rate. We
highlight that the change in drift rate from the initial beam
parameters does not significantly alter any type III drift rate as a
function of frequency, compared to the effect of the back-
ground density model. This is despite a doubling in the inferred
peak velocity between spectral indices α=6 and α=7.

6. Discussion

We have shown that the initial electron beam parameters
play a significant role on the dynamics of the electron beam as
it travels through the heliosphere. We initially assumed that the
electron beam was a power-law in velocity space with a
spectral index α. This led to the spectral index and the beam

Figure 14. Instantaneous bandwidth of the electron beam as a function of the plasma frequency. Left: the initial spectral index α varies from 7 to 9 with an initial beam
density of nb=107cm−3. Right: the initial beam density varies from nb=106cm−3 to nb=108cm−3 with an initial spectral index of α=8.

Figure 15. Frequency drift rate magnitude of the rise, peak, and decay of the
type III burst as a function of frequency. This related to the change in position
of the front, peak, and back of the beam as a function of time. The initial beam
density is nb=107cm−3 and the initial spectral index is α=8.
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density playing the dominant role for the phase space density of
the electron beam.

6.1. Initial Broken Power Law

We can instead assume that the electron beam is injected as a
broken power law in velocity space with some break velocity
vmin�v0�vmax. The source function changes from S(v, r,
t)∝v−α in Equation (1) to


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As the distribution below v0 is flat, the number of electrons at
velocities higher than a few vmin are much greater than in
Equation (1) for a given beam density nb. The broken power
law is necessary to have very high densities contained within
electrons above certain energies (e.g., 20 keV). These are
required to explain the hard X-ray observations observed in the
low solar atmosphere (Holman et al. 2011).

Using the broken power law, we ran simulations with
varying initial beam densities to show the effect of changing v0,
the break velocity. Figure 17 shows how the velocities increase
as v0 is increased. Injecting an electron beam with a high break
velocity has a significant effect on the resultant velocities of the
electron beam. This is not surprising given that we are
significantly increasing the phase space density of the high-
energy electrons by increasing v0. The simulation with
v0=0.23 c and nb=104cm−3 generated significant Lang-
muir waves with phase velocity vmax. Beam velocities would
have been higher if our simulation box extended further
than 0.7c.

The effect of changing the break velocity, v0, has been
investigated by Li & Cairns (2013), who showed that
increasing it significantly increases both the peak velocity
and the peak flux of fundamental radio wave emission. We
show here that v0 will have a significant effect on the front and
back velocities of an electron beam.

The acceleration of a broken power law is perhaps not a
physically probable accelerated distribution. There is no simple
physical explanation why the accelerated electron distribution

would form a plateau below v0, unless caused by some other
physical process like Langmuir wave generation. A high break
velocity could be caused during particle acceleration in the
presence of Coulomb collisions from a high-temperature
plasma. Electrons below the break velocity could be suscep-
tible to a significant level of collisions with the background
plasma within the acceleration timescale. During the latter
stages in solar flares, when the coronal plasma reaches
temperatures in excess of 10MK, collisions around the
acceleration region will be significantly higher.

6.2. Langmuir Wave Spectral Energy Density

We calculated the front, peak, and back of the electron beam
from the derived fundamental emission brightness temperature
(Equation (3)) assuming a saturation of ion-sound waves. The
peak of the brightness temperature is proportional to Wmax(k, r,
t)/k2. The rationale for using the radio brightness temperature
is the desire to use type III bursts for remote sensing of electron
beam properties.
Instead of using the radio brightness temperature we can

instead use the Langmuir wave spectral energy density. For a
given time we find the value of Wmax at each position, and then
use the corresponding FWHM to find the front, peak, and back
of the electron beam. The absence of 1/k2 means that Langmuir

Figure 16. Frequency drift rate magnitude of the electron beam as a function of plasma frequency. Left: the initial spectral index α varies from 7 to 10 with an initial
beam density of nb=107cm−3. Right: the initial beam density varies from nb=106cm−3 to nb=108cm−3 with an initial spectral index of α=8.

Figure 17. Front, peak, and back velocities for an electron beam with an initial
broken power-law velocity distribution using different break velocities.
Different beam densities of 103 and 104cm−3 are shown. Velocities are found
using a linear fit of distance and time between 30 and 70 MHz.
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waves with higher k-vectors (lower phase velocities) play a
more significant role in determining the front, peak, and back
of the beam.

Another metric that can be used is the FWHM of the
Langmuir wave electric field to find the front, peak, and back of
the electron beam. The Langmuir wave electric field is a
measurable quantity in the solar wind, unlike the Langmuir
wave spectral energy density. The electric field associated with
the Langmuir waves can be found from E2(r, t)=8πUw(r, t),
where Uw(r, t) is their energy density, found by integrating W
(k, r, t) over k. The electric field is even more influenced by
Langmuir waves with higher k-vectors than the peak spectral
energy density.

We show the comparison between the front and back of the
electron beam using the radio brightness temperature, the peak
spectral energy density, and the electric field in Figure 18. The
simulation is the same as shown in Figure 3 at t=6 s. The
difference between the three metrics is clear, with the method
using radio brightness temperature being coincident with
Langmuir waves at higher phase velocities and the method
using the electric field being coincident with Langmuir waves
at lower phase velocities. The length of the electron beam using
all three metrics remains similar, around 0.35Re at t=6 s.
The velocities attributed to the front and back of the electron
beam are higher when the brightness temperature is used and
lower when the electric field is used.

6.3. Beam Energy Density and Brightness Temperature

The complicated plasma emission mechanism has hampered
the use of radio bursts as a diagnostic for electron beam
energetics. For the first time we present an estimate for the
energy density contained within the electrons that produce the
type III emission as a function of peak radio brightness
temperature of a type III burst at different frequencies. The
electron energy density can be found from the electron
distribution function f (v, r, t) using

ò=( ) ( ) ( )U r t m f v r t v dv, 0.5 , , . 7e
v

v

beam
2

min

max

For a given frequency, the peak energy density correlates to the
peak brightness temperature, shown in Figure 19 using all

simulations presented in Section 4, which have different initial
electron beam densities and velocity spectral indices. At a
single frequency, the greater the energy density of the electrons
producing the Langmuir waves, the higher the radio brightness
temperature they generate. The energy density can be fit with a
power law at different frequencies, with the fit parameters
given in Table 2. The spectral index at each frequency is
approximately 0.5 but the amplitude decreases with decreasing
frequency, f, and has the approximate relationship of 10−38.4f 3

for f in Hz. We can then approximate the energy density of the
electrons responsible for the radio brightness temperature TT
using

= -( ) ( )U f t f T, 10 . 8Tbeam
38.4 3 0.5

The correlation between beam energy density and brightness
temperature can be explained using the analytical gas-dynamic
solutions. From Mel’nik et al. (2000) and Kontar et al. (2001)
we expect the peak Langmuir wave energy density to be

µ( ) ( )W v m n v . 9e b
max 3

We can substitute this into the beam brightness temperature,
defined in Equation (3), obtaining

µ( ) ( )T r t m n v, . 10T e b
max 5

The relation in Equation (10) provides a close fit to the
brightness temperature but an even closer fit is found using the
beam energy density

µ( ) ( )T r t U v, . 11T
max

beam
3

The relation is shown in Figure 19 using a constant of
proportionality, A. It deviates slightly for the simulations with
lower brightness temperatures. The peak brightness temper-
ature is thus heavily dependent upon the velocity (or energy) of
the electrons that are generating the Langmuir waves; electron
beams with higher velocities will typically have higher peak
brightness temperatures.
Using the beam energy densities we can calculate the total

energy of the electrons that are producing the type III emission,
Ebeam=UbeamV, by estimating the volume, V, of the beam. For a

Figure 18. Electron flux and Langmuir wave spectral energy density at 6 s for the initial electron beam parameters given in Table 1. The corresponding front and back
of the electron beam are indicated by horizontal dashed lines, found from the brightness temperature (black), the peak value of the Langmuir wave spectral energy
density (gray), and the Langmuir wave electric field (purple).
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given frequency, we can estimate the length of the beam in the
direction of propagation using a sum of the duration, found from
the FWHM of the brightness temperature, and the mean velocity
of the electron beam, found from = +¯ ( )v v v 2front back . We
estimate the area of the beam using the cross-section of the
magnetic flux tube that we use to model the r−2 expansion of the
electron beam traveling through the solar corona. We assume an
acceleration region cross-section of radius d=10Mm which is
at a distance of 30Mm along the cone of expansion. The
cross-section at 50MHz, occurring at 413Mm along the cone
of expansion gives a radius of 10/30×413=138 Mm
(3.2 arcmin). This is quite small compared to observed source
sizes (e.g., Kontar et al. 2017). Faster expansion of the magnetic
flux tube would increase source sizes but would reduce the
energy densities within the beam at a given frequency.

Assuming a Gaussian-distributed source we plot the energies
obtained in Figure 19 as a function of peak brightness
temperature. As the energy contained in the deca-keV electrons
increases, the corresponding radio brightness temperature
increases. The energies obtained are quite small in comparison
to those measured at 1 au (Krucker et al. 2007; James
et al. 2017). However the durations of our electrons beams
are significantly lower than those estimated at 1 au, with the
number of electrons per second of our largest simulations being
comparable to that of James et al. (2017) at 74 keV.
The flux, S, of our simulated radio bursts can be estimated

using the source size θ of 3.2 arcmin at 50MHz. Using the
Rayleigh–Jeans law
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we find fluxes of 750 SFU for a brightness temperature of
1011K. However, this does not take into account any propagation
effects like the scattering of light (e.g., Arzner & Magun 1999;
Kontar et al. 2017) that will occur from source to observer.
We can construct an equation for the energy contained in the

electrons responsible for the type III emission, based upon
observable quantities. The energy density of the beam can be
found by combining Equations (12) and (8). As described
above, the volume of the beam can be found from the product

Figure 19. Top left: peak beam energy densities as a function of peak brightness temperature for an initial electron beam with an instantaneous time injection.
Different points for a single frequency relate to beams with different initial beam densities and spectral indices. Colors represent different frequencies. Top right:
analytical estimates of the brightness temperature from gas-dynamic theory using the peak beam energy density Ub, the beam velocity at the peak brightness
temperature and a constant of proportionality, A. Bottom: beam energy estimated from the energy densities at 50 MHz assuming a source size of 3.2 arcmin. Note that
comparisons of energy density and energy with observations can only be done for type IIIs with similar characteristics to our simulations.

Table 2
Fit Parameters Used for Beam Energy Density vs. Peak Brightness

Temperature (Figure 19)

Frequency log Amplitude Spectral Index

200 −13.4 0.56
100 −14.3 0.52
40 −15.6 0.52
20 −16.5 0.52
11 −17.2 0.52

13

The Astrophysical Journal, 867:158 (15pp), 2018 November 10 Reid & Kontar



of the length of the beam, v̄tdur and the source size, θ2. Again,
assuming that the intensity is Gaussian-distributed, one arrives
at the following equation:
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where Ebeam is the energy in the electrons responsible for the type
III emission. If applied to data, the above equation should only be
used for small type III bursts that are similar to our simulations;
type III bursts with very long durations of tens to hundreds of
seconds at 50MHz are likely caused by long-duration injection
profiles or multiple electron beams, which may change how the
radio brightness temperature relates to beam energy density.

Our estimations serve as a first indication of the energy
contained within an electron beam using type III bursts, where
none currently exists. However, one must be careful as our
simulations do not take into account all of the physical
processes that will affect the electrons during their propagation.
The beam energy estimates do not account for the turbulent
background electron density (e.g., Melrose et al. 1986;
Kontar 2001b; Reid & Kontar 2010, 2017; Li et al. 2012),
which affects the level of Langmuir waves induced by an
electron beam. The simulations do not take into account the
scattering of light from source to observer, which can smear out
the radio light curves in time (e.g., Arzner & Magun 1999;
Kontar et al. 2017). They do not model the pitch-angle
scattering of electrons from magnetic fluctuations.

6.4. Beam Duration

In a recent study, (Reid & Kontar 2018), we analyzed 31
type III bursts using LOFAR and quantified, among other
variables, the FWHM duration of type III burst lightcurves. We
found a strong correlation between the type III durations and
the velocity of the exciters, derived assuming a density model
and second harmonic emission. We find the same correlation
between the exciter velocities and the type III durations using
the simulated type III brightness temperatures, shown in
Figure 20. The velocities found in Reid & Kontar (2018) from
the radio bursts are lower than the peak velocities from most of

our simulations, and we are finding the fundamental radio
brightness temperature, but the correlation is still strong. Our
explanation in Reid & Kontar (2018) holds, that the faster
electrons, responsible for the faster derived velocities, have a
shorter travel time through one point in space, and hence
produce type III bursts with shorter durations.
The type III durations as a function of frequency were also

shown in Reid & Kontar (2018). For comparison we plot the
range of durations found from the simulations as a function of
frequency and overplot the type III durations observed using
LOFAR. There is a very good agreement. The observed
durations are at the higher end of the simulated ones, expected
because the peak velocities estimated from the observations
were at the lower end of those found from the simulations. The
rise and decay times were also similar between the simulations
and the observations, with the simulated rise times being
smaller than the decay times.

7. Summary

We have simulated the propagation of electron beams
through the solar corona, taking into account the resonant
interaction with Langmuir waves in the background plasma.
We investigated how the front, peak, and back of the electron
beam evolve in time, as deduced from the peak type III
brightness temperature. We also showed how the electron beam
energy density varies with the brightness temperature of
fundamental radio emission.
After injection of a power-law distribution in velocity,

electrons initially propagate without generation of Langmuir
waves. After a distance x;δd, the first waves are generated.
The velocity initially increases with distance as higher-energy
electrons produce significant Langmuir wave spectral energy
density. As the injected distribution is a power law, the
maximum velocity increases as higher-velocity electrons start
to generate Langmuir waves. Later the velocity of the type III
source decreases as a function of distance from the Sun. The
FWHM length of the source generating a type III burst
increases as a function of time, with the rate of expansion
(expansion velocity) being the difference between the front and
back velocities. The faster beams expand more rapidly and the
front of the electron beam moves faster than the peak, which in
turn moves faster than the back of the beam.

Figure 20. Left: mean type III duration as a function of velocity found from the motion of the peak brightness temperature. Both variables were found between 30 and
70 MHz. A strong correlation exists, in line with observational results (Reid & Kontar 2018). Right: range of duration as a function of frequency from the numerical
simulations in the range 13–100 MHz. Type III durations from Reid & Kontar (2018) using LOFAR are overplotted, with the blue dashed lines showing the observed
standard deviations.
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The initial electron distribution affects the type III properties;
the velocities of type III bursts will be higher for higher initial
electron beam densities and lower initial spectral indices
(harder spectrum). Both parameters increase the energy density
contained within the electrons that produce radio emission. The
higher the energy density in the beam, the more energy that is
put into Langmuir waves and consequently the higher the
derived brightness temperature.

Energetic electrons are also affected by the magnetic
fluctuations that lead to the pitch-angle scattering of the
electrons. This plays a role for the higher-energy electrons that
we are discounting when characterizing the electron beams.
There will also be some effect on the deca-keV electrons and its
role on the electron transport has to be investigated.

One of the important processes that affect the comparison of
type III bursts and the electron simulation is radio-wave
propagation. Since the plasma emission originates at frequen-
cies close to the plasma frequency, the radio waves will be
strongly affected by scattering and refraction (e.g., Steinberg
et al. 1971; Riddle 1972; Arzner & Magun 1999). Recent
observations (Kontar et al. 2017) suggest that the spatial, and
hence temporal, characteristics of type III bursts at fundamental
frequencies are influenced by radio-wave propagation effects.
Specifically, the rise, decay, and duration become dependent on
the scattering of radio waves on the way from the radio source
to the observer. Therefore, the observed properties of type III
bursts will be a convolution of electron transport studied here
and radio-wave transport.

With the impending launches of Parker Solar Probe and
Solar Orbiter we will be able to measure in situ the electron
beams close to the Sun as they produce radio emission. While
they will not observe in situ at frequencies above 10MHz, the
combined observations of energetic electrons, Langmuir
waves, and Type III bursts should be able to test the velocities
at different parts of the electron beam, and estimate the beam
length. A great many more electron beams are likely to be
observed close to the Sun than at 1 au, in particular with
accompanying Langmuir waves, as beam densities will not
have decreased as much in the expanding solar wind plasma.
Related to this fact, we predict that higher-energy electrons
(>10 keV) will be measured co-temporal with Langmuir waves
closer to the Sun, especially at the front of the electron beam.
Moreover, the beams that produce type III radio emission are
likely to have higher fluxes than those where radio emission is
absent, for a given energy. Finally, Solar Orbiter should detect
the transport change in the beam spectral index by combining
X-ray measurements with in situ data.
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