L5 mission concept for the ESA-China S2 small mission opportunity

INSTANT

INvestigation of Solar-Terrestrial Activity aNd Transients

ESWW11, November 2014, Liège, Belgium

Outline

Context and motivations Limitations of other missions Scientific objectives and requirements Mission profile Model payload Spacecraft Conclusions

Context

- S2: ESA S-class mission opportunity with China
- S-class mission with 50 M€ESA + equivalent China
- Launch and payload costs may be additional
- Spacecraft mass ~300 kg + possibly propulsion module
- 60 kg/65 W for payload
- Launch in 2021

Timeline:

- First workshop in Chengdu last February
- Second workshop in Copenhagen in September
- Call issued around December 2014
- Proposals likely due May-June 2015.

Properties and processes that control coronal dynamics and geo-effectiveness

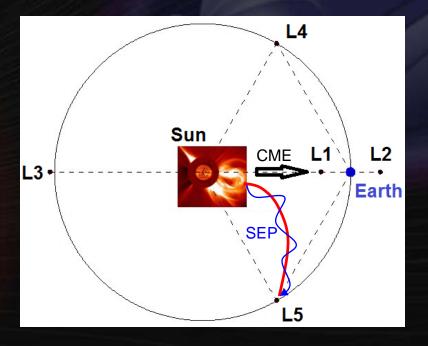
> Lagrangian L1 point

Anti-parallel fields = more geo-effective

Among all unknowns, coronal magnetic field magnitude and orientation is most elusive

Limitations of past and future missions

Limitations of L1 observations:


- Rough solar observations (halo CMEs ...)
- 1-hour delay for in situ observations

Limitations of STEREO:

- During solar minimum (low CME statistics)
- Only drifted through L5: not continuous

Limitations of Solar Orbiter and Solar Probe +:

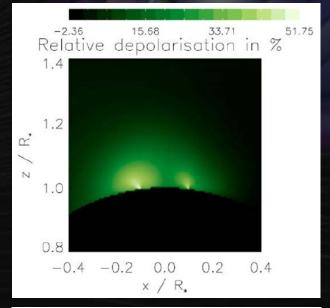
- Solar Orbiter imagers off at aphelion
- Orbits rarely appropriate

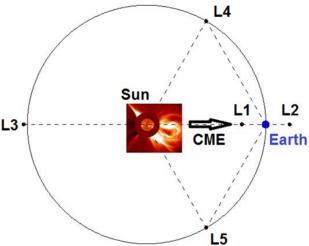
INSTANT will provide:

- Novel coronal/heliospheric imaging and in situ data, during solar maximum, at a key off-Sun-earth line vantage point
- Synergy with observations at Earth and inner heliosphere missions (Solar Orbiter, Solar Probe + and Bepi-Colombo)
- → Unprecedented space weather capabilities as bonus

INSTANT Science objectives

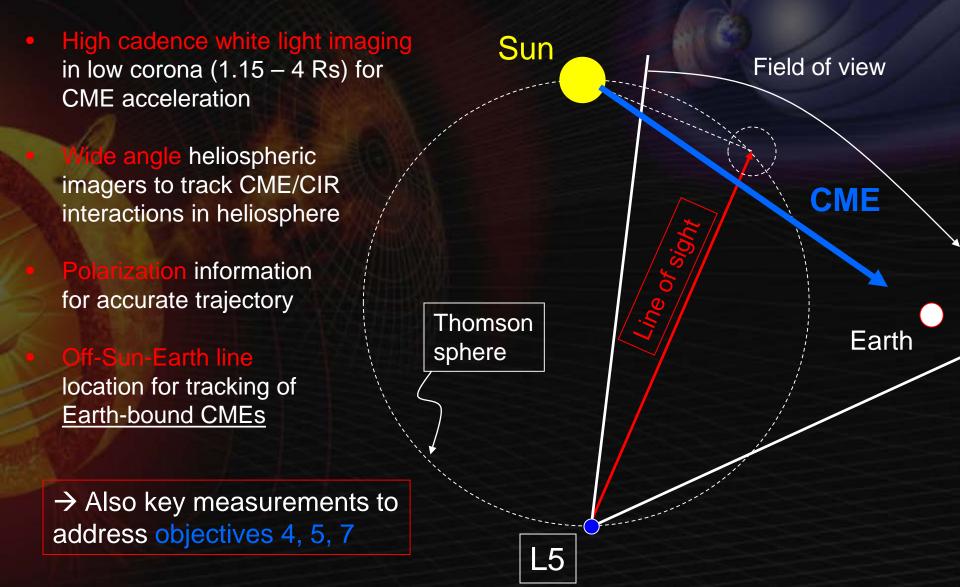
The proposed mission will tackle the following key objectives:

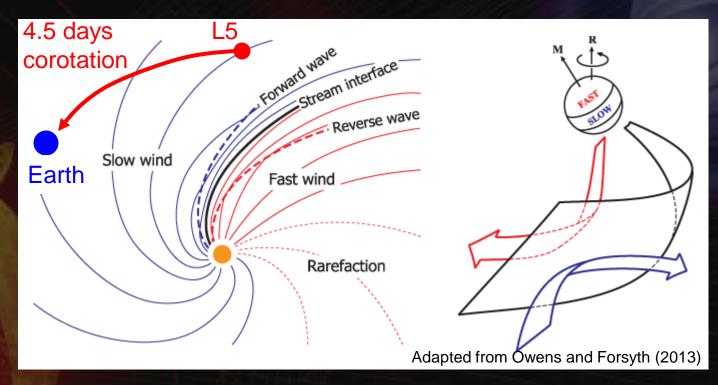

What is the magnetic field magnitude and topology in the corona?
 How does the magnetic field reconfigure itself during CME eruptions?
 How do CMEs accelerate and interact in the interplanetary medium?
 What are the sources of and links between slow and fast solar winds?
 Where do shocks form and how do they accelerate particles?


It will further provide the following crucial space weather capabilities: 6. 3-days advance knowledge of CIR properties that reach Earth 7. Twelve hours to 2 days advance warning of Earth-directed CMEs 8. Twelve hours to 2 days advance warning of CME-driven SEPs 9. *Unprecedented ability* to reconstruct the magnetic field magnitude and orientation of Earth-bound CMEs early in the corona

Requirements for objectives 1 and 2

- → What is the magnetic field magnitude and topology in the corona?
 → How does the magnetic field reconfigure itself during CME eruptions?
 - Novel Lyman-α measurements to determine line-of-sight magnetic field through the <u>Hanle</u> effect
 - Measurement in low corona (1.15 4 Rs) for reconstruction of magnetic field topology
 - Off-Sun-Earth line location for early determination of magnetic structure of Earth-bound CME and comparison with <u>in situ data</u> in heliosphere

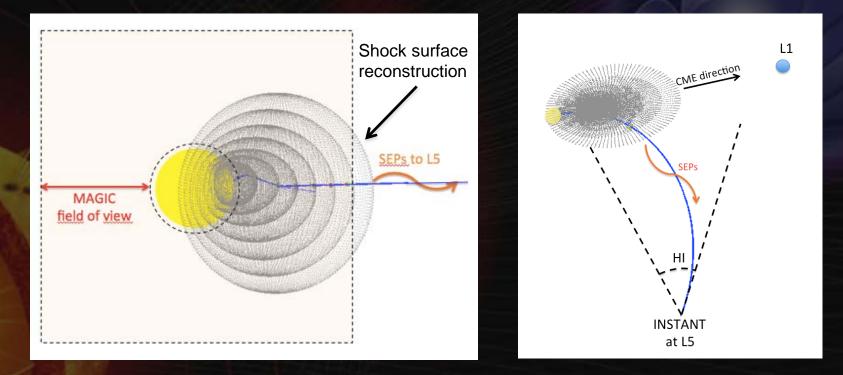

→ Also key measurements to address objectives 3, 5, 7, 9



Requirements for objective 3

 \rightarrow How do CMEs accelerate and interact in the interplanetary medium?

 \rightarrow What are the sources of and links between slow and fast solar winds?



Multipoint measurements of B-field, protons and suprathermals Lyman-α and white light imaging of corona and heliosphere Off-Sun-Earth line location for advance measurement of Earth-bound corotating structures

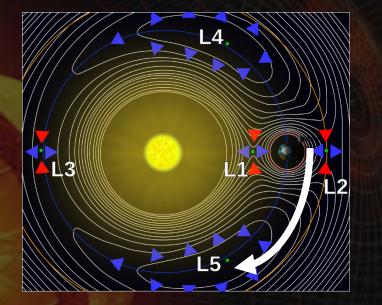
→ Also key measurements to address objectives 3, 5, 6, 8

Requirements for objective 5

 \rightarrow Where do shocks form and how do they accelerate particles?

Early imaging of shock formation in low corona (up to 4 Rs)
Magnetic field and density imaging for shock properties
Multipoint, off-Sun-Earth line measurement of energetic particles

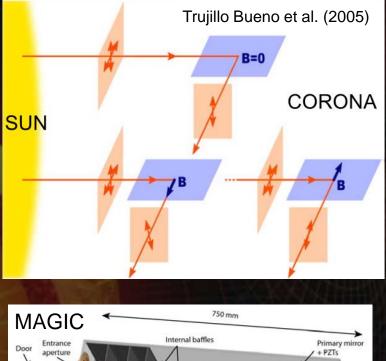
→ Key measurements to address objectives 3, 4, 5, 6, 8

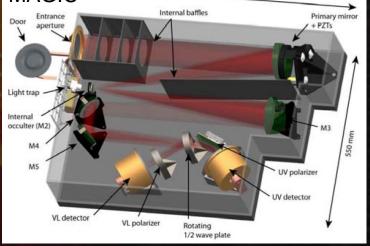

Mission profile: orbital/phasing requirements

 \bullet

•

•


 \bullet

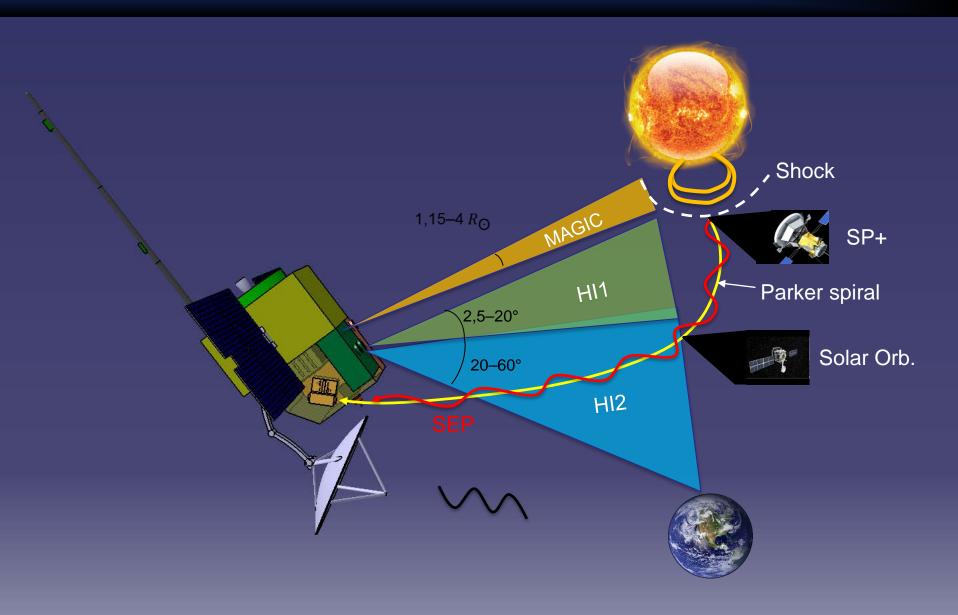


- Observation off-Sun-Earth line is a key for innovative science of Earth-directed CMEs
 - Towards L5 rather than L4 (CIRs and SEPs)
 - Science operations start after commissioning (~few months)
 - Science phase 1 with high telemetry (1 year) Space weather science in phase 2
 - L5 insertion after ~2 years operation

3 years operation sufficient to address key science objectives Launch in 2021 allows synergy with Solar Orb., SP+ and Bepi-C

Payload: innovative coronal imaging

MAGIC: MAGnetic Imaging Coronagraph


→ Lyman- α and white light coronagraph (1.15 – 4 Rs) at up to 2 min res.

HI: Heliospheric Imager

→ Polarized white light imager for enhanced accuracy in trajectory determination

MAG: In situ magnetometer (Chinese PI) PAS: Proton and Alpha Sensor (Chinese PI) HEPS: High Energy Particle Sensor MAGIC has TRL 6+, all others TRL 9

Payload fields of view

Summary of mission key elements

We place ourselves within the boundary conditions:

- S-class mission with 50 M€ ESA + equivalent by China
- Additional contribution to payload by national agencies
- Spacecraft mass 300 kg + possibly propulsion module
- 60 kg/65 W for payload

The proposed approach to shared contribution is:

- Launch by China (Long March)
- Platform by ESA (Myriad Evol., Proba, SSTL, ...)
- Payload shared by ESA member states and China
- Ground segment shared by ESA and China

Conclusions

Innovative concept that tackles compelling solar and heliospheric science objectives, and space weather as bonus, through:

→ unique measurements: Lyman-α and polarized HI
 → view from L5 for system-wide science
 → launch at Solar Maximum (2021)
 → synergy/timeliness with SolO and SP+

 \rightarrow large, supportive communities in EU – China (and US)

The mission proposed falls into the S-class constraints

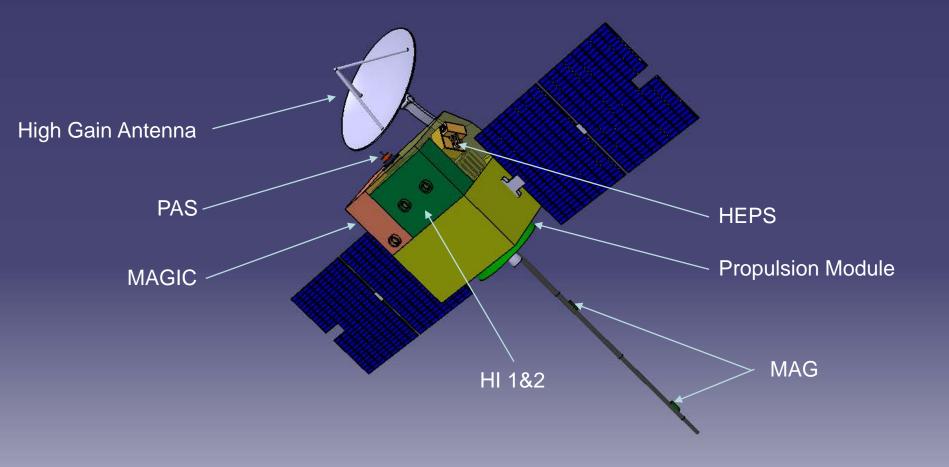
All countries/space agencies involved in space physics are currently designing and pushing for an L5 mission (INSTANT, RESCO, EASCO, HAGRID, 'KuaFu', etc.)

The team

Lavraud B¹ (Europe), Liu Y² (China)

Harrison RA³, Liu W², Auchère F⁴, Gan W⁵, Lamy P⁶, Xia L⁷, Zhang H⁸, Eastwood JP⁹, Kong L², Wang J², Wimmer-Schweingruber R¹⁰, Zhang S¹, Zong Q¹¹, Soucek J¹², Prech L¹³, Rochus P¹⁴, Rouillard AP¹, Davies JA³, Vial JC⁴, Maksimovic M¹⁵, Temmer M¹⁶, Escoubet CP¹⁷, Kilpua EK¹⁸, Tappin J³, Vainio R¹⁹, Poedts S²⁰, Dunlop M^{3,11}, Savani N²¹, Gopalswamy N²², Bale S²³, Li G²⁴, Howard T²⁵, DeForest C²⁵, Webb DF²⁶, Segura K¹

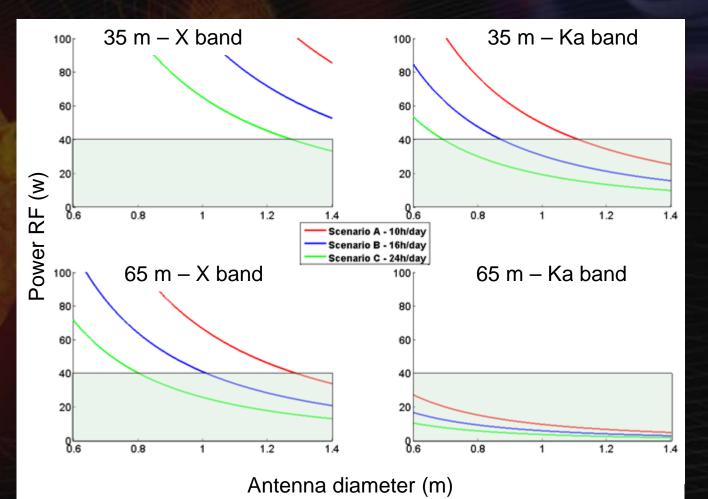
and the broader INSTANT science team


¹IRAP/CNRS/Université de Toulouse, France
³Rutherford Appleton Laboratory, Didcot, UK
⁵Purple Mountain Observatory, Nanjing, China
⁷Shandong University, Weihai, China
⁹Imperial College, London, UK
¹¹Peking University, Beijing, China
¹³Charles University, Prague, Czeck Rep.
¹⁵Observatoire de Paris, Meudon, France
¹⁷European Space Agency, The Netherlands
¹⁹University of Turku, Finland
²¹Naval Research Laboratory, Washington, USA
²³Space Sciences Laboratory, Berkeley, USA
²⁵Southwest Research Institute, Boulder, USA

²National Space Science Center, Beijing, China
⁴Institut d'Astrophysique Spatiale, Orsay, France
⁶Observatoire de Marseille, France
⁸Changchun Institute of Optics, China
¹⁰Christian Albrechts University, Kiel, Germany
¹²Institute of Atmos. Phys., Prague, Czeck Rep.
¹⁴Centre Spatial de Liège, Belgium
¹⁶University of Graz, Austria
¹⁸University of Helsinki, Finland
¹⁹Katholieke Universiteit Leuven, Belgium
²²NASA Goddard Space Flight Center, USA
²⁴University of Alabama, Huntsville, USA
²⁶Boston College, Boston, USA

EXTRA SLIDES

Spacecraft design and payload


- Based on existing or in development micro-satellite bus
 - Myriad Evolution as a baseline (up to 300 kg)
- 3-axis stabilized
- Additional propulsion module might be required for L5 orbit insertion

Telemetry requirements

The telecommunication subsystem is a key factor:

- 6.5 Gbits to be downlinked daily (preferred in X and/or Ka band)
- Ground antennas: 10 16 24 h daily contact scenarios studied
- 1m High Gain Antenna and transponder with < 40W RF assumed
 → Combined ESTRACK / Chinese DSN is sufficient

Payload budgets and related objectives

All instruments have TRL 6 to 9

NAME	INSTRUMENT TYPE	MASS (kg)	POWER (W)	SCIENCE OBJECTIVES
MAGIC	Visible light and Lyman-α coronagraph	26	20	1, 2, 3, 5, 7, 9
HI	White light polarized heliospheric imagers	16	16	3, 4, 5, 7
MAG	Magnetometer	3	4	3, 4, 6
PAS	Ion sensor	4	4	3, 4, 6
HEPS	High Energy Particle Sensor	2	6	4, 5, 8
DPU	Data Processing Unit	3	5	
TOTAL		54	55	

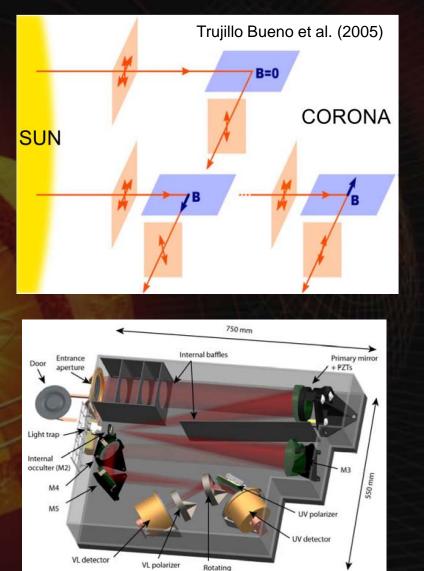
The mission and payload satisfy the technical constraints S/C mass \leq 300 kg, payload mass \leq 60 kg and power \leq 65 W

Payload telemetry and hardware teams

NAME	INSTRUMENT TYPE	TELEMETRY kbits/s	HARDWARE CONTRIBUTORS
MAGIC	Visible light and Lyman-α coronagraph	70	IAS (France) Nanjing U. (China) NSSC (China)
HI	White light polarized heliospheric imagers	4	RAL (UK) Shandong (China) Changchun (China)
MAG	Magnetometer	2	NSSC (China) Imperial C. (UK)
PAS	Ion sensor	2	NSSC (China) IRAP (France)
HEPS	High Energy Particle Sensor	2	U. Kiel (Germany) NSSC (China)
DPU	Data Processing Unit	_	IAP&CU (Czech R.) NSSC (China)
TOTAL		80	

Mission profile: launcher, platform, propulsion

- Launcher should allow exit to L5
 Launch with Long-March 2
 - Spacecraft mass max. 300 kg as per boundary conditions


European platform (Myriad Ev., Proba, else)

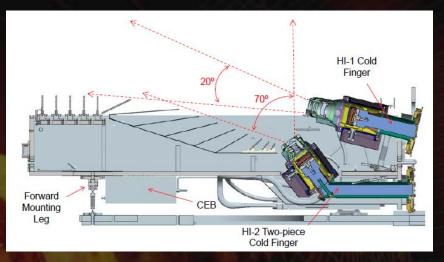
- Additional propulsion module for:
 - exit to L5, and
 - insertion at L5

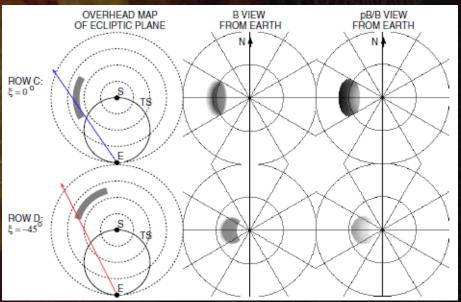
Classic or electric propulsion (Smart-1) may be considered

→ Exact orbit and propulsion details are still under study

Payload: innovative coronal imaging

1/2 wave plate


MAGIC: MAGnetic Imaging Coronagraph


- Novel Lyman-α measurements to determine line-of-sight magnetic field component through the <u>Hanle</u> effect
- High cadence (5-7 min) measurement in low corona (1.15–4 Rs) for reconstruction of magnetic field topology
- White light for electron density estimates
- Off-Sun-Earth line for early determination of magnetic structure of Earth-bound CME and comparison with *in situ* data

Heritage: R&T, SOHO, Solar Orb., ground, ...

TRL 6+

Payload: new 'polarized' heliospheric imagers

HI: Heliospheric Imagers

- Wide angle (2.5 60°) white light imagers to track CME and CIR interactions in heliosphere
- Polarization measurements
 for accurate trajectory
- Off-Sun-Earth line for early determination of trajectory of Earth-bound CME and comparison with *in situ* data in heliosphere

Heritage: R&T, STEREO, SOHO

TRL 9

Howard et al. [2013]

Payload: in situ instruments

In situ, off-Sun-Earth line (towards L5) measurement of B-field and thermal protons for CMEs and corotating structures

 1 AU (towards L5) measurement of energetic particles for direct detection and study of SEPs

MAG: Flux-gate Magnetometer

PAS: Proton and Alpha Sensor

HEPS: High energy Particle Sensors (e-/p+ and heavies in 10s keV – 10s MeV)

Heritage: Cluster, Chang'E, Solar Orb...

TRLs 9