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Abstract. The Earth’s magnetosphere exhibits global features such as plasmoid formation and release, and multiscale 
behavior, e. g., turbulence, bursty bulk flows, current disruption, etc.  It is essential to model these features properly in order to 
forecast them accurately and efficiently. The global behavior has clear dynamical behavior and can be predicted using 
dynamical models. The multiscale features on the other hand has a power law behavior and can not be modeled in the 
dynamical sense and can be described/modeled in terms of statistical properties. These properties of the magnetosphere are 
modeled using correlated data of the solar wind – magnetosphere coupling and global MHD simulations. The data-derived 
models yield forecasts of the global behavior from a mean-field model and the statistical limits of predictability from the 
multiscale features.   
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1. Introduction 

The disturbances originating at the sun can lead to many 
hazardous effects in the geospace environment, and the 
development of predictive models of these is one of the key 
objectives of the International Living With a Star (ILWS) 
program. The chain of physical processes at the sun and their 
coupling to the solar wind, the magnetosphere, the 
ionosphere and the thermosphere, span a wide range of space 
and time scales and consequently it is at present a challenge 
to develop a single comprehensive model in which all these 
processes are directly represented. The present models, such 
as MHD (global, two-fluid and Hall), hybrid and particle-in-
cell simulations each cover a part of the spectrum of 
processes and new multiscale simulation approaches are 
needed to cover the global and multiscale phenomena. 
 

The solar wind-magnetosphere coupling has been studied 
extensively using data from many space missions and 
modeling approaches. The coupling of the solar wind mass, 
momentum and energy to the magnetosphere is enhanced 
when the interplanetary magnetic field (IMF) turns 
southward, leading to geospace storms and substorms. The 
magnetosphere is a highly dynamic system under these 
conditions and its main component, the magnetospheric 
substorms, are disturbances with a typical time scale of an 
hour. When the IMF remains southward for an extended 
interval, the ring current grows under the influence of the 
solar wind variations, leading to geospace storms with typical 
time scales of days and are characterized by strong variations 
in the magnetic field on the ground. Along with the storms 
and substorms there are a number of processes, e. g., 
turbulence, bursty bulk flows, current disruption, etc., that 
contribute to the multiscale phenomena. 

 

The Earth’s magnetosphere is a non-autonomous 
dynamical system, driven by the solar wind. Studies of the 
magnetospheric dynamics using models derived from the 
correlated data of the solar wind – magnetosphere system 
have enhanced our understanding of the complex behavior of 
the magnetosphere. The advantage of this approach is the 
ability to yield the dynamical behavior of the system, 
inherent in observational data, independent of modeling 
assumptions. There has been considerable progress in the 
modeling and forecasting of the solar wind-magnetosphere 
coupling as an input-output system using techniques of 
nonlinear dynamics and complexity (Sharma et al., 2005).   
These data-derived models are based on the correlated data of 
the input time series I(t) (usually the solar wind convective 
electric field VBz) and the output time series O(t)  (the 
geomagnetic activity index AE or AL for substorms and the 
Dst index for storms).    
 

The modeling of magnetospheric substorms as a low 
dimensional system using the time series data of the auroral 
electrojet indices, AL or AE, to reconstruct its dynamics has 
shown its low dimensionality and therefore its predictability 
(Sharma, 1995).  The data-derived models have been used to 
provide reliable forecasts of substorms (Vassiliadis et al., 
1995; Ukhorskiy et al., 2002) and storms (Valdivia et al., 
1996).    Recent studies using time series data have shown 
that the coherence on the global magnetospheric scale can be 
modeled by averaging over the short scales. This follows 
from the recognition that the magnetosphere has features 
which are clearly global, such as during plasmoid formation 
and release during substorms, and in the same time there are 
stochastic or multiscale features.  A model for the global 
features has been obtained by using the mean field technique 
of averaging outputs corresponding to similar states of the 
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system in the reconstructed phase space (Ukhorskiy et al., 
2002, 2004). With such a mean-field model, accurate 
iterative long-term predictions are readily obtained, and since 
the model parameters need not be changed during predictions 
they are suitable for space weather forecasting.  This 
approach is now used to forecast storms and substorms near 
real time using the solar wind data from ACE spacecraft. 
 

The data-derived models yield reliable and accurate 
forecasts of geomagnetic activity due mainly to the ability of 
the nonlinear dynamical techniques in recognizing the 
inherent features in the data. However these models are 
empirical in nature and do not identify the physical variables 
and processes directly. The global MHD models (Lyon, 
2000; Gombosi et al., 2003; Raeder, 2003) are based on the 
first principles and provide a framework for developing a 
comprehensive model of solar wind-magnetosphere coupling. 
 

Considering the strong forecasting capabilities of data-
derived models and the potential of the first principle models 
to develop into comprehensive models, it is important to 
characterize their common elements. This will yield an 
understanding of the manner in which these models 
complement each other and clarify the future directions for 
the development of improved models. This paper presents a 
comparison of the global and multiscale behavior in these 
models based on the data-derived modeling using the 
Bargatze et al. (1985) database and the global MHD 
simulations for the same dataset. 

2. Data-derived modeling of the magnetosphere 
Recognizing the driven nature of the magnetosphere, the 
solar wind – magnetosphere coupling is modeled as an input-
output system. The local-linear filters (Ukhorskiy et al., 
2002) use the dynamical characteristics of the solar wind 
(input) to model the geomagnetic activity (output). In this 
approach the dynamical behavior of the magnetosphere is 
obtained directly from observational data, and have the 
advantage of being unencumbered by presumed processes.  
 

The magnetosphere has been shown to exhibit the features 
of a nonlinear dynamical system, and its global features have 
been modeled by a small number of variables (Sharma, 
1995). This remarkable property arises from the inherent 
property of phase space contraction in dissipative nonlinear 
systems. A dynamical input-output model can be constructed 
based on local-linear filters, which represent the relationship 
between the input I(t) and the output O(t). It is assumed here 
that the time series data contain the information necessary to 
determine the system evolution. When the phase space is 
reconstructed properly the evolution of the system can be 
modeled without any loss of dynamical characteristics 
inherent in the data. Such a data-derived model can then be 
used to predict the future states of the dynamical system.   
 

The time delay embedding technique is an appropriate 
method for the reconstruction of the phase space and for 
obtaining its characteristic properties. In this technique, an m-

component phase vector  is constructed from the time 
series x(t) as: 
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In an input-output model of the solar wind-magnetosphere 
system during substorms, the solar wind convective electric 
field VBs (V being the solar wind speed and Bs the southward 
component of the IMF) is commonly used as the input and 
the geomagnetic activity index AL or AE as the output. Thus 
the input-output vector in the m dimensional embedding 
space can be constructed as 
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where mMM OI == . The 2m-dimensional state vector Xi at t 
= t1, t2, . . . tN, can now be used to construct a trajectory 
matrix for the dynamics of the system. This matrix represents 
the dynamical behavior of the system contained in the data 
and yields its evolution in the reconstructed phase space.  

A.  Local-linear and mean field filters 
The local-linear filters are widely used to represent the 
dynamics taking into account the nonlinearity of the system.   
The main idea of this method is the use of the trajectories in 
the neighborhood of the state at time t to predict its location 
at the next time step. From the details of how the neighboring 
trajectories evolve, the location of the current state x(t) at 
next time step t+T can be predicted. The procedure is locally 
linear but is essentially nonlinear as the features of the 
neighboring trajectories are taken into account by considering 
a small neighborhood. For a given time series, a proper 
embedding dimension is obtained when two states  

and , which are close together in the embedded phase 
space, yield the next states of  and  which are also 
close together (Ukhorskiy et al., 2002). 

kx

nx
1+kO 1+nO

 
The predicted output  can be described as a nonlinear 

function of the input  and current output  as 
1+nO
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In this model the magnetospheric dynamics is represented 
by a state vector and the function F governing the evolution 
of the magnetospheric state depends on both the input 
and the previous states. A Taylor expansion of F up to the 
linear terms gives: 
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The zero order term )0(F  is a function of , the 
center of expansion, while 
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nOδ  and nIδ  are small deviations 
from the center. The three parameters ,)0(F nOδ , nIδ  can be 
obtained from the known data, which is referred to as the 
training set. Given the current state, the states similar to the 
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current states in the training set are selected as the first step. 
The degree of similarity of the current state with any other 
state in the training set is quantified by the Euclidean distance 
between them in the embedding space. The states within a 
specified distance of the current state are referred to as the 
nearest neighbors.  

 

 
 

 
Fig. 1. The weighted mean field predictions for the 2003 November storm. 
The solar wind input – VBz,  shown in panel (a), has a sudden increase that 
drives the storm and the substorms. The values of the actual (solid line) and 
predicted (dash line) values of – AL are shown in  panel (b). The values of m 
and NN correspond to minima in the normalized square error  (Chen and 
Sharma, 2006). 

 
The average value of the state vectors of the nearest 

neighbors is usually defined as the center of the expansion, 
referred to as the center of mass, and is used in defining the 
nonlinear filters for short term and long-term predictions of 
the auroral electrojet indices (Ukhorskiy et al., 2002). Thus 
the predicted output is given by 
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out that for a long-term prediction of AL time series, the 
terms other than the center of mass consist of the higher order 
terms of the filter for local-linear ARMA filter. These terms 
cannot be modeled in a consistent manner and should be 
ignored in developing a global model. The prediction 
procedure then reduces to a search of the average response of 
the system. In this forecasting method the choice of the 
nearest neighbors (NN) and the embedding dimension (m) are 
critical. If a large number of neighbors is used it is likely to 
lead to a smoothing of the dynamical variations, while a 
small number may lead to a wide differences among the 
chosen states. The choice of the embedding dimension m is 
based on the unfolding of the dynamics in the reconstructed 
phase space.  For a state , if the dimension m and its NN 
nearest neighbors represent the system properly, the average 
over NN nearest neighbors defines the smooth manifold of 
dimension m on which its dynamics can be predicted. Thus 
the prediction using the mean field approach (Ukhorskiy et 
al., 2004) is given by 
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The local-linear ARMA and the local-linear mean field filters 
have been obtained from the correlated database of solar 
wind and geomagnetic activity time series (Ukhorskiy et al., 
2002, 2003, 2004). Both these techniques yield very good 
results with the small or medium values of the dimension m, 
indicating that the global aspects of the magnetospheric 
dynamics can be modeled as a low-dimensional system. 

B. Weighted mean field filter 
In the mean field model all the states in the specified 
neighborhood, the NN nearest neighbors, are used to obtain 
the center of mass by a simple averaging procedure. It is 
however expected that the states close to the current state, 
and thus are similar, should contribute more than those 
farther away in deciding the predicted state. Based on this 
recognition, a new filter based on the mean field filter has 
been proposed to improve the accuracy and efficiency of 
predictions [Chen and Sharma, 2006]. This weighted filter 
takes into account the distances of the nearest neighbors and 
thus is not a simple average over the NN nearest neighbors. 
Since some of the nearest neighbors are far way from each 
other and also farther away from the center of mass, a set of 
weight factors g can be introduced such that they depend 
inversely on the distances of each nearest neighbor from the 
mass center. The weights can thus be chosen to be 
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where is the Euclidean distance of the ith nearest neighbor 
from the center of mass. Then the predicted output that 
includes these weighting of the neighbors is  
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In the limit all the nearest neighbors have the same distance 
from the center of mass, the weighted mean-field filter will 
yield the same prediction as the mean field filter. However if 
the NN nearest neighbors are distributed over a wide range of 
the distances from the center of mass, the nearest neighbors 
closer to the center of mass will dominate the output of the 
prediction. The inclusion of nearest neighbors farther away 
should not affect the prediction significantly as these will 
have smaller weights, thus making the predictions less 
sensitive on the number of nearest neighbors NN.  This 
weighted mean field filter can capture the large scale features 
because averaging NN nearest neighbors can smooth the high 
frequency variations. 
C. Modeling of superstorms   
The weighted mean field filter has been used to model the 
solar wind-magnetosphere coupling during the superstorms 
of October-November 2003. The solar wind induced electric 
field VBz, which includes both the northward and southward 
components of IMF, is used as the input. The following steps 
are adopted in order to obtain the optimal nonlinear weighted 
mean field filters for superstorms (Chen and Sharma, 2006). 
First, the activity level of the solar wind driving is computed 
by averaging the southward component of . Then both 
the input (VBz) and the output (AL) of the time interval 
corresponding to the same activity level of the 
magnetosphere from the 2001 database are selected as the 
training set. For the two superstorms, the selected data group 
from the 2001 database is the “super” level (〈 〉 ≥ 2500 
nT⋅km/s) of the database. Second, using the selected data 
interval of input  and its corresponding AL as a training 
set, the index AL is predicted for the superstorms using the 
weighted mean field filter.  The normalized mean square 
error (NMSE) is used to determine the optimal parameters for 
the prediction by comparing the predicted and actual AL 
values. In this model, three free parameters can be used to 
minimize the NMSE. The first two parameters are the 
embedding dimensions MI  and Mo. However  

ZVB

SVB

ZVB

IO MMm ==  
in general and consequently the vector length in the phase 
space is 2m. The third parameter is the number of nearest 
neighbors NN.  From a wide range of values of these 
parameters a small set of values are chosen by examining the 
NMSE’s for a range of m and NN  (Chen and Sharma, 2006). 
The solar wind convective electric filed (- ) for the 
November 2003 storm, shown in Fig. 1(a), shows a sudden 
enhancement in the early part of the event and this drives the 
geospace storm. The predicted and real AL are shown in    
Fig. 1(b). The solid line represents the real AL and the dashed 
line represents the predicted AL. Iterative predictions of the 
November 2003 storm were carried out for 7500 minutes 
(125 hours) with a minimum NMSE of 0.792 and maximum 
correlation coefficient of 0.758.   In the predictions shown in 
Fig. 1, the output closely reproduces the sharp variations of 
AL and captures some of the abrupt changes.  

ZVB

 
Earlier prediction studies (e.g., Vassiliadis et al., 1995; 

Ukhorskiy et al., 2002, 2004) used Bargatze et al. (1985) 

dataset, which corresponds to the declining phase of a solar 
cycle and contains only a few weak storms with Dst < -25 
nT, and substorms with AL values of –1000 nT. On the other 
hand, the superstorms of November 2003 occurred close to 
the last solar maximum and the storm intensities were 
extremely high, with a Dst value of - 472 nT and a AL value 
of – 2499 nT. Since such storms are uncommon, it is 
naturally hard to find many similar events in the available 
databases, such as that of year 2001. So the nearest neighbor 
searches in these cases yield only a few states close to that of 
the superstorms. If we use a large number of nearest 
neighbors and a simple arithmetic averaging over them, the 
output of the model is smoothed over these and cannot 
capture the peaks of the substorms. In such cases the weight 
factor g plays an important role and yields improved 
predictions (Chen and Sharma, 2006).    

3. Global and multi-scale phenomena 
The predictability of the magnetosphere demonstrated by 
using the data-derived models has two important 
implications. First, it shows the global coherence of the 
magnetosphere in terms of the low-dimensionality of the 
system (Vassiliadis et al., 1990; Sharma, 1995). This feature 
is consistent with the global picture obtained from the theory, 
modeling and observations (Siscoe, 1991), and from the 
global MHD simulations (Lyon, 2000). Second, the 
predictive ability of the data-derived models is high, and has 
provided reliable tools for space weather forecasting. 

 
Fig. 2. The dynamical manifold of the trajectories in the three dimensional 
space (the first three components) obtained from the singular spectrum 
analysis of the correlated data of the coupled solar wind – magnetosphere. 
The arrows are the flow vectors and show the trajectories making the 
transition from the elevated (red) to the lower (green) region (Sitnov et al, 
2000). 

 
In the nonlinear dynamical sense the global coherence or 

low-dimensionality implies that the trajectories of the 
magnetosphere lie on a surface or manifold and it would be 
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possible to obtain a representation of this surface by using 
suitable techniques. The technique of singular spectrum 
analysis has been used successfully to obtain the dynamical 
behavior of the magnetosphere (Sharma et al., 1993). This 
technique essentially identifies the leading variables of a 
system in terms of the eigenvalues and eigenfunctions of the 
covariance matrix derived from the trajectory matrix 
discussed in Sec. 2. The singular eigenvalues and 
eigenfunctions computed from the time series data provide an 
ordered set of orthonormal vectors inherent in the data and 
are suitable for further studies of the dynamical behavior. For 
example, in the case of dynamical systems whose time series 
data is contaminated with noise, this technique yields the 
leading variables as the eigenvalues above a noise level.  
 

 
 
Fig. 3. The conditional probabilities of AL index as functions of the solar 
wind VBs. The strong driving (yellow) leads to a more global response 
(peaked) whereas the weak driving leads to a Power-law distribution of AL 
index with no dominant scale. The black curve is the marginal distribution 
and the entire data set represented by the points on the floor (Ukhorskiy et 
al., 2004). 
 

The magnetospheric dynamics, being driven by the 
turbulent solar wind, is complex and most of the techniques 
developed for dynamical systems can not be applied readily.   
The singular spectrum analysis has been adapted to analyze 
the correlated database of the coupled solar wind – 
magnetosphere system to yield the simplest representation of 
the surface generated by the dynamical trajectories  (Sitnov et 
al., 2000), shown in Fig. 2. The red region shows the 
‘higher” level from which the system evolves to the “lower” 
level shown in yellow. The arrows show the flow vectors of 
the dynamical trajectories. 
 

The multiscale features of the magnetosphere are evident 
in many studies of the power law spectra obtained from 
observational data. The principle components of the 
dynamics obtained from the singular spectrum analysis can 
be used to analyze the distribution of scales in the 

magnetospheric response to the solar wind driving.  The   
magnetospheric resonse (AL index) for a given level of solar 
wind input (VBz) can be used to compute the conditional 
probabilities, which in turn can be used to study the 
dependence of the former to the latter in a Bayesian manner. 
The magnetospheric response can be different for different 
levels of driving by the solar wind. In order to study such 
differences in the conditional probabilities, the VBs in 
Bargatze et al. (1985) database is divided into three activity 
levels: strong (VBs > 9 mV),  medium (0.6 < VBs < 9 mV) 
and weak (VBs < 0.6 mV). The conditional probability 
P(Ot+1, xt) is defined in the embedding space xt for the 
predicted output Ot+1 (Ukhorskiy et al., 2004). The 
probability distributions are shown in Fig. 3 for the different 
activity levels: strong (yellow), medium (red) and weak 
(blue). The conditional probabilities for the entire data set is 
given by the black curve in the back panel of Fig. 3 and the 
floor shows all the points in the database.  
 

The conditional probabilities of the magnetospheric 
response to the different levels of driving by the solar wind 
show significant dependence on the latter. For the weak 
activity (blue ribbon in Fig. 3), the distribution is essentially 
a combination of two power law distributions. This reflects 
the multiscale nature of the magnetosphere in which there is 
no dominant scale in the response. On the other hand the 
medium (red) and strong (yellow) activity levels have similar 
distributions, with peaked distributions with a sharper peak 
for the latter, and reflect the dominance by the global 
magnetospheric dynamics. The marginal probability 
distribution corresponding to the entire data set  is essentially 
scale-free, with a break in the spectrum at –AL ~ 500 nT.   

 
From the forecasting point of view it is important to 

recognize the differences in the magnetospheric response for 
different solar wind conditions.  In order to improve the 
accuracy in the forecasts of the magnetospheric state, the first 
step is to identify the intensity of the solar wind variations 
and then find similar events in the past.  These events form 
the database for modeling and forecasting the ensuing 
disturbances. 

4. Global MHD simulations of the magnetosphere  
The interaction of a time varying solar wind with the 
magnetosphere has been modeled extensively using a 3-D 
MHD code coupled interactively with a 2-D electrostatic, 
height integrated ionospheric model. It usually consists of 
two tightly coupled modules (Fedder and Lyon, 1995).  The 
first module is a 3D MHD that simulates the solar wind-
magnetosphere interaction on a logically spherical grid 
deformed to be nearly cylindrical, typically with radius 100 
RE and length over 400 RE.  The computational grid is 
designed to place maximum resolution at critical locations, 
such as the bow shock, magnetopause, and tail plasma sheet.  
Solar wind conditions are maintained along the sunward and 
side edges of the computational grid thereby allowing use of 
time dependent solar wind parameters from spacecraft, such 
as WIND and ACE, as input conditions.  A simple supersonic 
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outflow condition is used at the far tail boundary, x = -450 
RE. The second module models the response of the 
ionosphere, and provides the inner boundary condition on the 
MHD module. This module is a height integrated 
electrostatic model that solves Poisson’s 
equation, J=Φ∇Ε∇ , where Φ is the ionospheric potential, 

Ε the conductance tensor and J|| the field aligned current.  The 
conductance tensor has both Pedersen and Hall components, 
whose values are spatially varying with prescriptions 
dependent on the electron precipitation and the solar 
ultraviolet radiation.  The ionospheric model is coupled to the 
inner boundary of the MHD module, located typically at 2-3 
RE by line tying matching conditions.  The electron 
precipitation and J|| inputs to the ionospheric module are 
computed from the MHD module.  In turn the electric 
potential computed in the ionospheric module is input on the 
inner boundary of the MHD module.  The LFM global 
magnetospheric model (Lyon, 2000) is driven by measured 
solar wind parameters and completely specifies the polar 
plasma convection patterns and strength as well as the 
ionospheric auroral conductance.  
     

 The LFM global MHD model was used to simulate the 
magnetosphere during selected intervals of Bargatze et al. 
(1985) dataset. The solar wind conditions are obtained from 
the IMP8 satellite database for 7 intervals in the medium 
activity level. These intervals have a total duration of around 
280 hours and are characterized statistically by simple input-
output relationships. Also these intervals are suitable for 
benchmarking the global MHD simulations.   The solar wind 
variables are the density, velocity, magnetic field and thermal 
pressure. Thus the simulations use more details of the solar 
wind than VBs  in the case of Bargatze et al. (1985). As usual  
the solar wind variables are propagated to the front boundary 
of the global MHD model. The full ionospheric model is used 
and the dipole tilt is taken into account in these simulations 
(Shao et al., 2003). 
 

The simulated magnetospheric and ionospheric response, 
saved every minute in the SM coordinate system, were used 
to develop a database of the coupled input-output system as 
given by the global MHD model.  The solar wind input to the 
MHD code consists of several variables and they can be used 
as the input variables in the nonlinear dynamical analysis. 
However, since substorms are closely associated with the 
southward interplanetary magnetic field, in the analysis of the 
simulation results the solar wind input is represented by the 
induced electric field VBs. Also this allows a better 
comparison of the data-derived and global MHD models by 
using the same set of variables.  
 

The pseudo-AL index is used as the measure of the 
magnetospheric response during substorms. In order to 
emulate the manner in which the actual AL index is 
computed, the pseudo-AL index is derived from the maxima 
of the westward ionospheric Hall current obtained by a 
search of the computational grid in the northern hemisphere. 
The actual AL index is derived from the H components of the 

magnetic field monitored at 12 stations distributed in the 
auroral region.   The deviations of the H component of the 
magnetic field variations at the different stations from their 
quiet-time values are plotted together to obtain the AL index 
as the lower envelope. The observational AL index is a 
measure of the strength of the auroral electrojet and is 
directly proportional to the east-west (azimuthal) ionospheric 
Hall current or the westward electrojet during 
magnetospheric substorms.  The pseudo-AL index, derived 
from global MHD model, is computed following a procedure 
similar to that of the actual AL index.  The relation between 
the observed AL index and the simulated or pseudo-AL index 
were analyzed in detail. For example, the 16th interval in 
Bargatze et al. (1985) data set corresponding to May 27-29, 
1974 covers about 35 hours and the 24th interval (Aug. 26-27, 
1974) in the same data set covers about 40 hours. In both 
these cases the simulated pseudo-AL index is found to tract 
the observed AL index closely on the whole (Shao et al., 
2003). The coupled VBs-pseudo-AL index data was analyzed 
using nonlinear dynamical techniques in the same manner in 
which Bargatze et al. (1985) were analyzed.  This yields a 
comparison of the dynamical features of the magnetosphere 
from the MHD simulations with those from the observations. 
 

Using the same techniques as in the data-derived modeling 
(Sitnov et al., 2000), the principal components Pj (j=1, 2, 3) 
are obtained from the simulation data and these are used to 
construct the 3-D surface created by the trajectories. In the 
first eigenvector the output component (pseudo-AL index) is 
the dominant one, and the corresponding principal 
component along this eigenvector is levelled  Po. This 
variable is closely related to time-averaged output or the 
magnetospheric response to the solar wind. In the second 
eigenvector, the input component VBs is dominant, and the 
corresponding principal component is leveled Pi , and is 
closely related to time-averaged input. In the third 
eigenvector, the variations in the input component is 
dominant and the corresponding principle component is 
leveled P3. Thus P3 is roughly proportional to the time 
derivative of the input component. With these three variables 
the manifold of the  magnetospheric dynamics can be 
obtained, and is shown in Fig. 4. In this figure the principal 
component Po is color-coded and the smoothed surface is 
achieved through a standard triangulation procedure. The 
circulation flows given by dP3 /dt and dPo /dt are represented 
by the arrows. To the lowest order,  the surface in Fig. 4 can 
be approximated by a two-level surface, and closely 
resembles the manifold in  Fig. 2 derived from the 
observational data.   The phase transition-like behavior of 
substorms, exhibited by Fig. 2, is thus reproduced by the 
global MHD simulations.  
 

The substorm cycle starts in the region with  Pi  = 0 and P3  
= 0 in Fig. 4, and the arrows show the trajectory of the 
evolution.  When Pi   increases above zero, Po  remains nearly 
zero and shows small decreases, while  P3  increases first, 
then remains nearly constant. This region corresponds to the 
growth phase in the substorm cycle. Subsequently when Po  
takes large negative values the flow arrows are the largest, 
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and intensifications follow, corresponding to the expansion 
phase. The system evolves back to the original state with 
decreases in Pi   and –Po. This stage broadly corresponds to 
the    recovery phase of substorms. 
  

The dynamical manifolds shown in Figs. 2 and 4 
correspond to the same solar wind conditions and are 
obtained from the singular spectrum analysis of the actual 
and simulated magnetospheric responses. The overall 
agreement between the two leads to the conclusion that the 
global MHD model reproduces the solar wind – 
magnetospheric coupling quite well. The visualizations of the 
simulation results for many specific events show the 
dynamics of the magnetosphere and the results shown in 
Figs. 2 and 4 represent a clear statistical comparison of the 
simulated and observational data.   It should also be noted 
that both figures show that the evolution of the 
magnetosphere on the global scale is quite regular and 
resembles the temperature-pressure-density diagram of 
equilibrium phase transitions in a two phase system, e. g., the 
water-steam system. The differences in the details in the two 
cases arise, at least in part, from the inherent multiscale 
nature of the magnetosphere. 

  

 
Fig. 4. The two-dimensional approximation of the manifold representing 
magnetospheric dynamics.  The principal component P3 is color-coded. The 
circulation flows are given by  dPi/dt and dPo/dt are represented by arrows. 
This manifold obtained from the global MHD simulations closely resembles 
the one obtained from the data-derived modeling (Shao et al., 2003). 

 
  The multiscale behavior of the magnetosphere has many 
origins and has been interpreted as arising from phase 
transition-like processes, self-organized criticality and 
turbulence (Sharma et al., 2005b). The singular spectrum 
analysis of the observational and simulated data yield power 
law distributions, which indicate a scale-free character. 
 Driven by the turbulent solar wind, the magnetosphere 
during geomagnetically active periods is far from equilibrium 
and storms and substorms are essentially nonequilibrium 
phenomena. The multiscale and intermittent behavior 
originate, in part,  from this nonequilibrium nature. In the 

phase transition scenario of the magnetospheric global and 
multiscale behavior, the global features are associated with 
first order phase transitions and the multiscale features are 
associated with second-order phase transitions (Sitnov et al., 
2000; Sharma et al., 2005a). This scenario, initially based  on 
data-derived modeling, is borne out by the global MHD 
simulations. This convergence of the data-derived and global 
MHD models show that these properties are inherent in the 
magnetosphere. 

5. Conclusion 
The global and multiscale aspects of the magnetosphere have 
been recognized for sometime now, but they have been 
studied separately. The data-derived and global MHD models 
provide integrated models of these inherent properties of 
solar wind – magnetosphere coupling. 
 

The data-derived models have been developed from 
extensive observational data, corresponding to a wide range 
of different activity levels. For example, Bargatze et al. 
(1985) database represents a declining phase of the solar 
activity    and Chen and Sharma (2006) is for 2001   during 
the peak of the last solar maximum. The studies of these 
geospace disturbances in these data sets by using the 
techniques of nonlinear dynamics clearly reveal  the global 
and multiscale behavior. Recognizing that the magnetosphere 
is neither completely low dimensional nor completely 
stochastic, new forecasting tools have been developed to 
yield dynamical forecasts of the global features and statistical 
descriptions of the  multiscale features in terms of conditional 
probabilities (Ukhorskiy et al., 2004). The conditional 
probabilities are computed as Bayesian measures in the input-
output phase space and can be used for risk assessment 
analysis. 

 
The global MHD model  has now emerged as the leading 

first principles model of the solar wind - magnetosphere 
coupling and has provided both qualitative and quantitative 
results advancing our understanding. Most of the global 
MHD simulations have been of events relevant to particular 
studies, e. g., of space weather events. The simulations of 
long periods of the magnetosphere corresponding to the well 
known Bargatze et al. (1985) data set has provided the basis 
for the comparison of the data-derived modeling with 
simulations. The analysis of the simulated data using 
nonlinear dynamical techniques shows the global and 
multiscale features of the magnetosphere obtained earlier 
from data-derived modeling. 

 
The good agreement between the data-derived and global 

MHD models is a significant advance in our understanding of 
the magnetospheric dynamics. It shows a confluence in the 
levels of modeling capabilities. It also shows that the global 
and multiscale features observed in both models are truly 
inherent in magnetospheric dynamics.  

 
The global MHD models are large scale simulation models 

which have been developed over decades and require 
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extensive resources of supercomputers. The data-derived 
models on the other hand are considerably simpler models 
which require workstation level computer resources. The 
ability of the latter to yield the results at the level of large 
scale simulations is a testament on the advances in our 
understanding of complex systems, especially in nature.    
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