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Abstract. The surface wave induced magnetic reconnection model (SWIMR), based on Alfvén resonance theory near the 
neutral point when extended to magnetosonic waves is seen to have not only the features of formation of current sheets and 
plasmoids, as in the incompressible case, but also gives rise to the features caused by the thermal catastrophic loss of 
equilibrium for the current sheet. From this point of view, the catastrophic model for substorm is reexamined and it is shown in 
this paper that the catastrophic model can explain not only the onset and expansion phase of the substorm, but also the 
recovery phase. The correspondence of the energy input due to resonance absorption to the Akasofu parameter is clearly seen. 
Further, the dependence of the critical velocity for the onset of K-H instability, the generation, existence and propagation of 
surface waves on the interplanetary parameters is discussed keeping in view that the SWIMR model depends on the dispersion 
of surface waves. The SWIMR model therefore can be parameterized to understand some aspects of space weather 
phenomena. 
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1. Introduction 
There are two elements of understanding the solar wind-
magnetosphere interaction, the basis for space weather 
phenomena, one is to derive a mathematical description of 
the dynamics of the magnetosphere from the basic physical 
principle and second is to use the derived mathematical 
model to forecast the disturbances of the Earth’s magnetic 
field caused by the solar wind.  

 
There are many theories (Lui, 1992) to model the 

geomagnetic storms, the extraordinary disturbances of the 
Earth’s magnetic field. From the point of view of the fact that 
the reconnection by pure tearing modes cannot give the 
explosive phenomena such as solar flares or magnetic storms, 
most of these models depend on the driven magnetic 
reconnection, either by flow velocity or by dispersion of 
hydromagnetic waves. In this paper we shall consider the 
model of magnetic reconnection induced by Alfvén surface 
waves.  

 
Considering the MHD waves in structured and 

inhomogeneous magnetic fields Uberoi (1994) proposed long 
wavelength Alfvén surface waves as a possible source for 
producing conditions for inducing reconnection. The surface-
wave-induced-magnetic reconnection (SWIMR) model is 
based on the Alfvén resonance theory near the neutral point.  
More recently (Uberoi, 2002) it was shown that this model 
can be easily extended to compressional or magnetosonic 
waves showing the features of formation of current sheets 
and plasmoids as in the case of the incompressible case. In 

addition, the energy considerations show the triggering by the 
catastrophic loss of equilibrium (Smith, Goretz and 
Grossman, 1986). Synthesizing the SWIMR model with the 
concept of thermal catastrophe model, with some 
modifications, we show that the resultant driven model can 
explain not only the expansion but also the recovery phase of 
the substorms. Since the model depends on the existence and 
characteristics properties of surface wave propagation, which 
is closely related to interplanetary parameters we try to show 
that this model can be used for prediction of geomagnetic 
storms, an important element of space weather phenomena. 
The rate of the resonant absorption of Alfvén wave energy 
gives the coupling function for the solar-wind-magnetosphere 
interaction.  

2. The reconnection model 

The Alfvén wave equation governing the dynamics of the 
hydromagnetic waves in the incompressible, ideal, MHD 
media propagating in inhomogeneous magnetic fields with 
variation in the direction perpendicular to the plane of the 
magnetic field is given as  
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and vx is the perturbed velocity component.  

When compressibility is taken into account equation (1) 
becomes  
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With Vs being the velocity of sound and VA(x), the Alfvén 
velocity.  

Equation (1) shows a singular behaviour at the point where 
the local Alfvén speed becomes equal to the phase speed of 
the wave and has been studied extensively by using normal 
mode analysis, initial value problem (Hasegawa and Uberoi, 
1982) and time-dependent solution for general class of initial 
conditions was given in (Uberoi and Sedlacek, 1992). From 
all these studies it was noted (Uberoi, 1994) that the time 
evolution of Alfvén waves shows that the current density 
increases secularly with time t.  Thus, showing the 
development of current sheets as the Alfvén wave propagates 
in the inhomogeneous systems. The thickness of the current 
sheet decreases as 1/t. These current sheets arise not due to 
any instability but due to the accumulation of energy around 
the resonance point, where Alfvén wave energy is absorbed 
resonantly. Therefore, propagation of MHD waves in 
inhomogeneous plasma with sheared magnetic field can give 
rise to singular current sheets. This situation continues till 
time t = th. For t > th, where th is the intrinsic timescale 
(Uberoi et al., 1999), the resistivity effects become important 
and the regularization of the singularity takes place by 
resonant mode conversion of surface waves along a sharp 
discontinuity to the resistivity modified Alfvén  wave at the 
non-zero singular point at the centre of the resistivity layer. 
However, the mathematical structure of the hydromagnetic 
wave equation (1) remains the same at zero and non-zero 
singular points, but the role played by surface waves in the 
resonant absorption mechanism at these two points is 
different (Uberoi, 1994). The theories of resonant absorption 
of Alfvén waves consider surface waves propagating along a 
sharp discontinuity separating two infinity extended plasma 
regions.  The structural discontinuities are not taken into 
account. Near a neutral point the structure of the 
discontinuity becomes important as waves are now of long 
wavelengths. In this case, wave propagation is to be 
considered for a plasma layer, which can support two types 
of surface modes of oscillations, symmetric and asymmetric.  

Since we intend to apply results from a consideration of 
the shape of the magnetic tail we consider a plasma layer 
with thickness 2a, with the following magnetic field profile:  
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And the density being, ρ0(x) and ρ1,2 in the inner and outer 
regions.  The parameters on the two sides of the interfaces at 
x = ± a are related by the requirements of the continuity of 
the pressure and normal component of the velocity across the 
surface of discontinuity.  

Equation (1) is a coupled equation for shear Alfvén and 
Alfvén surface waves, the coupling arising owing to the non-
uniformity of the magnetic field. In case of constant B0(x) 
except for regions of sharp discontinuities, equation (1) 
decouples giving a bulk Alfvén mode and the surface modes 
governed by the Laplacian ∇2vx=0. The Laplace equation 
when solved for magnetic profiles with sharp discontinuities 
as given in equation (4) with the required mentioned 
boundary conditions gives the modes of surface waves 
propagation. In order to understand the role of surface waves 
and the resonance absorption near the neutral point equation 
(1) with magnetic profile (4) was discussed as an initial value 
problem and it was shown (Uberoi, 1994) that in the long 
wavelength limit ka << 1, the symmetric surface modes of 
the plasma layer resonantly couple to the low-frequency end 
of the Alfvén continuum.  

When the resistivity is switched on, the long wavelength 
surface modes couples with the tearing mode of the layer, 
thus inducing magnetic reconnection on the tearing mode 
timescale. This mode is unstable for certain wavelengths 
greater than a critical value and begins to grow until magnetic 
islands are formed. The estimate of the linear dimensions of 
the islands that are formed is given by wavelength at which 
instability sets in as 64.0/2 aπλ =  (Uberoi, Lanazerotti, 
Wolfe, 1996). 

The important timescales found in this model are  

,3/13/13/2 Stort AhRAh τττ ==                                    (5) 

where τR=4πa2/η, τA=a/VA, with VA = B0
2/4πρ2 and S=τR/τA 

is the Lundquist number. Here, η is the plasma resistivity. 
The resistivity effects begin to play a role for t ≥ th. The other 
important timescale is the reconnection time:  

5/35/35/2 Stort ArRAr τττ == .                                    (6) 
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The width of the resistive layer scales as  
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For considering the magnetosonic waves we consider the 
equation (3). We note that near the spatial resonance ε ≈ 0 
eqn. (3) becomes,  
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which has the same structure as equation (1). As equation (8) 
is similar to equation (1) the basic features of the 
development of current sheets and magnetic reconnection 
induced by the resonant coupling of compressional surface 
waves leading to the formation of plasmoids will be the same 
as in the incompressible case. We note here that, although the 
dispersion relation for the surface waves along the density 
discontinuities are different from that of incompressible case 
(Uberoi, 1989), the long wavelength compressional surface 
waves for the layered structure have the similar dispersion 
equation, so without any modification the SWIMR model can 
be used both for the shear Alfvén  and magnetosonic waves.  

3. Thermal catastrophe  
The equation (8) has a logarithmic singularity at  AVk ||=ω  
i.e. at the point x = x0, where the phase velocity of the wave 

, becomes equal to the Alfvén  wave velocity. 
The rigorous analysis of this equation shows that the surface 
waves, which are now coupled to an Alfvén bulk wave, due 
to inhomogeneity, as pointed out in the previous section, are 
resonantly absorbed near the resonant point. The surface 
energy, thus dissipated, irreversibly heats the plasma by 
coupling its energy to kinetic Alfvén  waves, or if finite 
conductivity is a dominant factor (Hasegawa and Uberoi, 
1982), to bulk Alfvén  waves which, in turn, are heavily 
damped. The surface wave energy thus dissipated irreversibly 
heats the plasma. 

||/ kV ph ω=

 
For developing the energy equation for the problem under 

consideration, consider the plasma layer as given by equation 
(4). The surface perturbations are made at x = ± a. Following 
(Smith et al., 1986) we write the heating rate QA per unit area 
in the (y,z) plane due to resonant absorption of compressional 
waves as  

 

2222
0

22
2

2
||

2
1

]1)/))(0(4/[(
4/)(2

akkkBk
aab

Q x
A

πρπω

ππω

+−
=

⊥

,         (9) 

 

where  and b1x is the amplitude of perturbation 
of a single mode of surface wave excited at x = a with 
frequency ω. Balancing this heating solely against convective 
transport of energy towards the reconnection layer around x 
= 0 with convection velocity Vx, the steady-state energy 
equation is  
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The last term on the right is the contribution from resonant 
absorption such that  
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q0 is the combined heating rates of other heating mechanisms 
and P(x)=n(x)T(x). While writing the energy balance 
equation (10) it is assumed that the plasma layer (4) reacts 
quickly enough to adiabatically changing inputs of Alfvén 
wave energy and establishes a quasi-steady state. In the 
steady state and with the further approximation of treating the 
convecting velocity as a free parameter Vx, the convective 
term reduces to that given in the left-had side of equation 
(10). A detailed discussion of such an approximation in the 
context of solar flares is given by Tur and Priest (1978). 
 

The equation (10) on integration from x = 0 to a gives:  
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Here, n0 is the particle density at x = 0 within the layer.  
 

∫= .
5

2
00 dxq

nV
T

x
 

 

Defining  
 

ww
iw T

T
T

T
TTakx

k
k

k
mT 0'

0
'2222

2
||

2
,,,

2
1

===⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ⊥ πω  

 

and noting that from equilibrium conditions  
as the plasma pressure in medium 2 is much less than the 
magnetic pressure, the equation (9) on using (11) then can be 
written as  
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As dW/dT has two positive roots for which d2W/dT2 > 0, 
equation (13) has a family of solution 'T ( , X, W) in the 

form of mathematical catastrophe for 

'
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seen in Fig. 1.  For W = W*which is given by  
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the equilibrium temperature T′ jumps discontinuously or 
catastrophically to a higher value, see the points B and D in 
Fig. 1. The thermal catastrophe of the current sheet 
corresponds to the triggering of the substorm expansion 
phase.  
 

 
 
Fig.  1. Schematic of solutions T (T0, X, W) = 0 of equation (12) showing the 
unphysical catastrophic jumps in temperature from B to D for the critical 
energy W*. 

4. Model for substorms 
The geometry given by equation (4), the layer of thickness 
2a, with neutral sheet inside represents the plasma sheet. The 
perturbations of the boundary x = ± a, we assume that are due 
to surface waves at the magnetopause at x = ± L. We note 
from section 2 and 3 that there are two processes arising due 
to resonant absorption of MHD waves in the neutral sheet in 
a structured plasma medium. One is the resonant excitation of 
the tearing mode after time , giving the reconnection 
energy, in the incompressible case, equals to the resonant 
absorption energy (Vekestein, 2000).  In the other process the 
Alfvén wave heating energy when balanced with the 
convective transport of energy towards the current sheet 
gives the thermal catastrophic loss of equilibrium. The latter 
triggers the expansion phase of the substorm.  The synthesis 
of these two processes gives the model of substorms.  
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The time th, after which the recovery phase sets in can be 

calculated as:  
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For 2a=1RE, η = 10-3 ohms-km, VA = 500 km/s. 
 

th = 2.6 x 103 = 2600 sec. 
 
This value can be increased with low values of η and VA. 

5. Energy coupling function 
The heating rate QA as a function of T shows a resonance 
peak of width XTw at T = Tw. Catastrophe occurs when T has 
a value 1-X < T/Tw < 1+X, QA again decreases and the 

equilibrium can be stabilized. We note here that the 
maximum value of X is equal to 3/1 . 
 

The maximum heating rate obtained when T = Tw over an 
area A on both sides of the current sheet is 2AQA, which 
from equation (10) with ω/k|| = Vsw, surface wave phase 
velocity, can be written as  
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The main phase of the storm in this model is therefore 

controlled by the parameter εA. Considering the plasma sheet 
with a = 0.5RE and length 100 RE, Vsw = 500 km/s, b1x = 0.1 
B2 with B2 = 50γ = 50 x 10-5 Gauss and X = 0.3. 
 
ε A = 1.5 x 1018 ergs/s. 
 
Which compares well with the moderate type of storm. For 
the large values of Vsw, ε A can be increased.  
 

Comparing εA with the Akasofu parameter  
 we find that the magnetic storm is 

driven by the surface waves and the amplitude changes of the 
magnetic field  in the normal direction and not directly by 
the solar wind. Monitoring the surface wave velocity and , 
the magnetic field in the lobe region, it is possible, therefore, 
to estimate εA which can then give the prediction of Dst and 
AE index. We assume that the surface waves are generated at 
x = ± L, the magnetopause, by the K-H instability. In this 
case, Southwood’s instability criterion, (see Uberoi, 1984) 
gives the critical value of the solar wind velocity for 
instability as 
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Therefore generation of surface waves require the solar wind 
speed u > uc. 
 

The angle ( )12 ββ − is function of ψ, the angle between 
the magnetic field and solar wind velocity in the solar wind. 
This was seen by Lee and Olson (1986). Also, B2 is function 
of the interplanetary magnetic field B∞. Therefore 
 
uc = f(ψ,B∞). 
 
Thus measure of interplanetary parameters can predict a limit 
on uc for which the surface waves can be generated, which in 
turn could induce a magnetic storm.  For example for ψ = 

60o, it was seen that (Lee and Olson, 1986) 5.4=
∞A

c

V

u
. 

Taking VA∞ = 70 km/s, uc = 315 km/s. Hence, by monitoring 
the solar wind velocity and the interplanetary parameters, the 
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necessary condition for the onset of a substorm can be 
predicted.  
 

We had also shown (Uberoi, 1984) that for u = uc, 
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In this case we see from equation (15) that the input coupling 
function can also be function of interplanetary parameters. 
Prediction of Aε  then can be used to get AE and Dst indices 
of the storm as considered by Akasofu (1981). 

6. Conclusion  
The two features of the Alfvén Resonance theory that the 
magnetic reconnection can be driven by Alfvén surface 
waves and that the mathematical catastrophe as shown by the 
energy equation are synthesized to give a model for a 
magnetic substorm. It is seen that using this model a fairly 
accurate prediction of the onset and growth of magnetic 
storm manifested in the AE and Dst index can be made by 
monitoring the generation and propagation of low frequency 
Alfvén surface waves at the magnetopause. The dependence 
of the input energy function, due to resonant absorption of 
Alfvén waves, on the interplanetary parameters suggests the 
possibility of using this model for numerical forecasting of 
the space weather.  
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