
ILWS WORKSHOP 2006, GOA, FEBRUARY 19-24, 2006 

   

Theoretical model for calculation of helicity in solar active regions 

P. Chatterjee 

Department of Physics, Indian Institute of Science, Bangalore- 560012, India 
 
Abstract. We (Choudhuri, Chatterjee and Nandy, 2005) calculate helicities of solar active regions based on the idea of 
Choudhuri (2003) that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby 
giving rise to the helicity. Rough estimates based on this idea compare favourably with the observed magnitude of helicity. We 
use our solar dynamo model based on the Babcock--Leighton α-effect to study how helicity varies with latitude and time.  At 
the time of solar maximum, our theoretical model gives negative helicity in the northern hemisphere and positive helicity in the 
south, in accordance with observed hemispheric trends. However, we find that, during a short interval at the beginning of a 
cycle, helicities tend to be opposite of the preferred hemispheric trends. Next we (Chatterjee, Choudhuri and Petrovay 2006) 
use the above idea along with the sunspot decay model of Petrovay and Moreno-Insertis, (1997) to estimate the distribution of 
helicity inside a flux tube as it keeps collecting more azimuthal flux during its rise through the convection zone and as 
turbulent diffusion keeps acting on it. By varying parameters over reasonable ranges in our simple 1-d model, we find that the 
azimuthal flux penetrates the flux tube to some extent instead of being confined to a narrow sheath outside. 
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1. Introduction 
Solar active regions are known to have helicity associated 
with them. Observational studies based on vector 
magnetograms (Pevtsov et al., 1995; 2001; Bao and Zhang, 
1998) indicate that the preferred sign of this helicity is 
opposite in the two hemispheres (negative in northern 
hemisphere and positive in the southern), in spite of a very 
large statistical scatter. Fig. 2 of Canfield and Pevtsov (2000) 
is a typical plot showing a variation of helicity with latitude, 
which any theoretical model has to explain.  
 

Solar magnetic fields are believed to be produced by the 
dynamo process. One possibility is that the dynamo process 
itself is responsible for the generation of helicity.  The other 
possibility is that the rising flux tubes, which eventually form 
active regions, get twisted by interacting with the helical 
turbulence in the surrounding convection christened the Σ-
effect by Longcope et al. (1998). The two possibilities 
mentioned above need not be mutually exclusive: both may 
be simultaneously operative. A careful comparison between 
observational data and detailed theoretical models will be 
needed to ascertain the relative importance of these two 
effects.   

 
In section 2.1, 2 we present calculations of helicity based 

on our two-dimensional kinematic solar dynamo model 
presented in Nandy and Choudhuri (2002) and Chatterjee et 
al.  (2004).   
 

 In a Babcock-Leighton dynamo poloidal field A is created 
from the decay of tilted active regions, the amount of tilt 
being given by the Joy's Law.  Also, in accordance with the 
Hale's polarity rule, a bipolar active region formed by a flux 
tube with positive Bz would have the leading spot towards the 
equator than the following spot. Decay of such a pair would 
thus mean clockwise lines of Bp around active regions. When 
a new toroidal flux tube with positive Bz moves upwards near 
the surface, the poloidal field gets wrapped around the 
toroidal flux tube. Due to high magnetic Reynolds number 
the flux tubes are not able to cut through the poloidal field 
lines thus giving rise to the helicity.  Using the above idea in 
section 3.1, we (Chatterjee, Choudhuri and Petrovay, 2006) 
formulate a 1-d problem to estimate the distribution of 
helicity in the solar active regions.  

2.  Estimating the value of Helicity 
 For, force free fields in the photosphere and the corona we 

may define helicity as  
 

z zB / B (1)α = ∇×   

                      

where z corresponds to the vertical direction, which is along 
the axis of the flux tube for active regions on the surface.  
The parameter α (not to be confused with the dynamo α-
effect traditionally associated with the poloidal field 
generation mechanism) is a measure of the handedness or 
chirality of the magnetic field. The typical observed value of 
the twist parameter α from magnetogram data, calculated by 
several authors is about 2 × 10-8/m. 
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To estimate the value of helicity theoretically, we have to 
keep in mind that the flux of poloidal field BP through the 
whole solar convection zone (SCZ) gets dragged by the 
toroidal flux tube rising under magnetic buoyancy (see Fig. 4 
of Choudhuri 2003). If d is the depth of the convection zone, 
the flux dragged by the tube is  

 

)2(dBF P≈  
 

This flux gets wrapped around the tube of radius a. In an 
ideal-MHD situation, this flux F would be confined to a 
narrow sheath around the flux tube.  In reality, however, we 
expect that the turbulence around the flux tube would make 
this flux F penetrate into the flux tube. Then the magnetic 
field going around the tube can be taken to be of order F/a.  
The current density associated with this field is of order F/a2 
and is along the axis of the tube.  If BT is the magnetic field 
inside the flux tube, then it follows from (1): 
 

)3(B/daBB/)a/F( TPT ≈≈α 2  
 

on substituting from (2) for F. We use Bp ≈ 1G, the depth of 
the SCZ d ≈ 2x108 m and the field inside sunspots BT ≈ 3000 
G. On taking the radius of the sunspot a  ≈ 2000 km and a  ≈ 
5000 km, we get α ≈ 2x10-8 m-1 and α ≈ 3x10-9 m-1 
respectively. Thus, from very simple arguments, we get the 
correct order of magnitude. 

2.1. Results from dynamo simulation 
In section 4 of Chatterjee et al. (2004) we have presented a 
particular dynamo model, which we refer to as our standard 
model. We now present helicity calculations based on this 
standard model.  A flux eruption takes place in our model 
whenever the toroidal field at the bottom of the SCZ exceeds 
a critical value. Whenever an eruption takes place in our 
dynamo simulation, we calculate the poloidal flux F through 
SCZ at the eruption latitude by integrating Bθ from the 
bottom of SCZ (r = Rb) to the top (r= Rs), i.e. s

b

R
RF Bθ= ∫ dr  If 

the sign of F is opposite to the sign of the toroidal field B at 
the bottom of SCZ, then the helicity is taken as negative 
(otherwise it is positive).  

 
Fig.1a is a plot of helicity associated with eruptions at 

different latitudes.  This is the theoretical plot that has to be 
compared with observational plots like Fig. 2 of Canfield and 
Pevtsov (2000).  To see the variation of helicity with the 
cycle, Fig.1b and Fig.1c present plots of helicity for eruptions 
during 4 years of solar maximum and 4 years at the 
beginning of the cycle respectively. The straight lines 
represent the least-square fits.   

3. Distribution of helicity in active regions and accretion 
of poloidal field 
If the magnetic flux in the rising flux tube is nearly frozen, 
then we expect that the poloidal flux collected by it during its 
rise through the SCZ would be confined in a narrow sheath at 
its outer periphery. In order to produce a twist in the flux 

tube, the poloidal field needs to diffuse from the sheath into 
the tube by turbulent diffusion. However, turbulent diffusion 
is strongly suppressed by the magnetic field in the tube. This 
nonlinear diffusion process was studied in an untwisted flux 
tube by (Petrovay and Moreno-Insertis, 1997) who concluded 
that a substantial amount of flux may be eroded away from a 
rising flux tube during the process of its rise through the 
SCZ.  In the present paper we extend this model by including 
the poloidal component of the magnetic field (i.e.  the field 
which gets wrapped around the flux tube) and study the 
evolution of the magnetic field in the rising flux tube, as it 
keeps collecting more poloidal flux during its rise and as 
turbulent diffusion keeps acting on it. 
 

 
Fig. 1. Helicity α (plotted along the vertical axis in arbitrary units) for 
eruptions at different  latitudes, denoted by open circles: (a) for an entire 
solar cycle; (b) for 4 years during the maximum and the declining phases of 
the solar cycle; (c) for the first 4 years of the solar cycle. The solid lines in 
(b) and (c) are  least--square fits to the model results. 

3.1 Equations in the comoving Lagrangian frame 
Suppose we formulate our problem in a frame of reference 
fixed with the centre of the rising flux tube.   As the flux tube 
rises to regions of lower density and expands, it would 
appear in that frame there is a radial expansion of the 
material inside the flux tube.     
 

Let us assume that the material inside the flux tube 
expands in a self-similar fashion and use the Lagrangian 
position coordinate ξ  instead of Eulerian coordinate r.  Then 
we can write  

 
( ) )4(rtF=ξ     
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Where F(t) will have to be a monotonically decreasing 
function of t for an expanding flux tube.  With some simple 
algebra we find 
 

( ) ( ) )5(,tFtξ,B'=tr,B zz
2)(         

 
( ) ( ) ( ) )6(,tFtξ,B=tr,B '

φφ .     

    

2z zB' B'1=F ηξ , (
t ξ ξ ξ

⎛ ⎞∂ ∂∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

7)

( ) ( )φ 2
φ

B ' 1= F η ξB ' . F vBφ (8)
t ξ ξ ξ ξ

∂ ⎡ ⎤∂ ∂ ∂
−⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 
We incorporate the accretion of poloidal flux to the tubes by 
assuming that the poloidal flux is brought uniformly from all 
directions by a radial inward flow with velocity v equal to the 
velocity with which the fluid is flowing from the upward 
direction.   As the flux tube rises through the SCZ, we denote 
its radial distance from the centre of the Sun by R.  The flux 
tube begins from the bottom of SCZ at R = Rb, where its 
radius is ξft and the external density is ρe0. When it rises to R 
where the external density is ρe, its radius becomes rft.  Since 
the density inside the flux tube would be very nearly equal to 
the external density, mass conservation implies 
 

2.2
0 ftefte,b rRρ=ξρR  

 
From (4) it follows that 
 

)9(
ρR

Rρ
=

r
ξ

=F
e,b

e

ft

ft

0

                           
Thus, to find F as a function of time, we need to find out 

how R changes as a function of time and we also require a 
model of the SCZ which will give us the value of eρ  at that 
value of R. 

 
We take η to be given by the expression 
 

( )κ0 eqη = η / 1+ B / B , (10)⎛ ⎞
⎜ ⎟
⎝ ⎠

                     
 

where 2
φz B+B=B 2  is the amplitude of the magnetic field 

and Beq is the equipartition magnetic field. We use the 
convection zone model of (Unno, Kondo and Xion, 1985) to 
obtain Beq at different positions R within SCZ. 
 
3.2 Results                                                                                  
The presence of 3000 G magnetic fields in sunspots is a 
compelling proof that magnetic fields may never fall to such 
low values inside fluxtubes near the surface; in fact, at least 
in photospheric layers, they remain well above the 
equipartition value (the magnetic field inside a typical 

sunspot being about thrice the equipartition field). We 
present some calculations by artificially not allowing the 
magnetic field to fall below the equipartition  value.  Suppose 
the magnetic field in the interior of  the  flux  tube  falls  to  a  
value  sBeq  at  some  depth (s being a numerical factor of the 
order of unity).  We assume that the magnetic field inside the 
flux tube will have the value sBeq in the  higher  layers  as  it  
rises  further.   If  this  is  the  case, then   magnetic buoyancy 
would be given by 
 

 
e

2

e

ie

πp
Beqs=

ρ
ρρ

162

2−
.   

 

While we calculate the rise of the flux tube by using this 
expression of magnetic buoyancy, we cannot allow the cross-
section to expand indefinitely if the magnetic field has to 
remain sBeq. Instead of equation (8), we calculate F(t) by 
using the relation  
 

( ) 0/ BsB=tF eq                                                           (11) 

 
Where B0=105

 G.  Results for s=1 (case B1) and s=3 (case 
B3) are shown in Fig. 2 and 3 respectively. We plot 

'B,'B φz and pα  as functions of ξ  at depths 0.7 Rs, 0.85Rs, 

0.9 Rs, 0.95 Rs and 0.98 Rs.  The times taken to reach these 
depths are given in the figure captions. The diffusion remains 
significantly quenched if the magnetic field stays higher than 
Beq and has also less time to act because the flux tube rises 
fast.  As a result, we see that the effect of diffusion is 
somewhat less for case B1 and drastically less for case B3.  
We see in Fig. 3 that 'Bz  has not diffused much and 'Bφ  

has remained confined in a narrow sheath at the boundary of 
the flux tube, being unable to diffuse inward unlike in Fig. 2.  

4. Conclusions 
Two clear theoretical predictions follow from our helicity 
model.  Since the helicity goes as a-2 as seen from (3), the 
smaller sunspots should statistically have stronger helicity 
(i.e., higher values of twist α). At the beginning of a cycle, 
helicity should be opposite of what is usually observed. 

 
The results presented above indicate that the contribution 

of poloidal field accretion to the development of twist can be 
quite significant, and under favourable circumstances it can 
potentially account for most of the current helicity observed 
in active regions. 

 
One rather strong prediction of our model is the existence 

of a ring of reverse current helicity on the periphery of active 
regions. The amplitude of the resulting twist (as measured by 
the mean current helicity in the inner parts of the active 
region) depends sensitively on the assumed structure (diffuse 
vs. concentrated/intermittent) of the active region magnetic 
field right before its emergence, and on the assumed vertical 
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profile of the poloidal field. 
 

 
Fig. 2.  Plots of 'B,'B φz  and  αp as functions of ξ  for arising flux tube. 

The field inside the tube is not allowed to decrease below eqB   (case B1). 

The different curves correspond to the profiles of these quantities at the 
following positions of the flux tube: 0.7 Rs (thick solid), 0.85 Rs (solid), 
0.9Rs (dashed),  0.95 Rs (dotted),  0.98 Rs (dash-dotted).  The flux tube 
reaches these positions at times 0 days, 5.2 days, 6.6 days,  7.7 days and 8.2 
days after the initial start.  The values of ( )eqBB /   at the centres of these 

flux tubes at these positions are 10, 1.72, 1.0, 1.0, 1.0 respectively. 
 
 

 
Fig. 3.  Plots of Bz, B'φ and  αp as functions of  ξ for a rising flux tube.  The 
field inside the tube is not allowed to decrease below Beq  (case B1). The 
different curves correspond to the profiles of these quantities at the following 
positions of the flux tube: 0.7 Rs (thick solid), 0.85 Rs (solid), 0.9Rs 
(dashed),  0.95Rs (dotted),  0.98 Rs (dash-dotted).  The  flux tube reaches 
these positions at times 0 days, 5.2 days, 6.2 days,  6.8 days and 7.0  days 
after the initial start.  The values of (B/Beq )  at the centres of these flux tubes 
at these positions are 10, 3.0, 3.0, 3.0, 3.0 respectively. 
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