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Abstract. Helioseismology is the study of the variations in the internal structure and properties of the dynamics of the sun 
from measurements of its surface oscillations. We are interested in validating and determining the efficacy of the helioseismic 
measurement procedure. To this end, we simulate acoustic wave propagation in a solar-like spherical shell that extends from 
0.2R to about 1.0004 R, where R is the radius of the sun. In order to render the calculation tractable, wave propagation is 
treated as a linear phenomenon. In this article, I will discuss the difficulties that are consequent to the assumption of linearity 
and the methods to resolve them thereof. 
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1. Introduction 

Solar oscillations possess abundant diagnostic information 
about the solar interior. Sophisticated observations of these 
oscillations along with techniques of helioseismology have 
led to the precise inferences of the solar structure, the 
rotation-rate and large-scale dynamics. It is important to 
understand and place bounds on the ability of 
helioseismology to probe the solar interior. In relation to this, 
little has been done in the context of the forward problem in 
spherical domains to complement the extensive inversion 
analyses applied to data obtained from the Michelson 
Doppler Imager (MDI) onboard the Solar and Heliospheric 
Observatory (SOHO), in operation since 1996. 
 
 Helioseismic analyses primarily use the line of sight 
Doppler velocity of plasma at the solar photosphere. This 
surface is in continual motion due to the interaction, impact 
and reflection of millions of wave modes. The primary source 
of wave generation is the intense turbulence present in the 
convecting uppermost surface layers. In the sun, detected 
waves that possess diagnostic value are either surface gravity 
or acoustic modes. While surface gravity modes are 
constrained to sample only the surface layers, acoustic modes 
plumb the depths of the solar interior and re-emerge altered 
by the structure and dynamics of the solar interior. A 
substantial part of the wave modes that comprise the acoustic 
wave spectrum travel distances large enough that 
incorporating sphericity into the model becomes unavoidable. 
 
 An accurate description of the solar near-surface layers is 
highly non-trivial, requiring multi-scale and multi-
phenomenon physics. In order to compute the acoustic wave-
field in a finite amount of time and keeping in mind 
constraints of computational expense, we invoke several 
simplifying assumptions, one of which is the assumption of 

linearity. Linearity however, comes at the price of being 
unable to fully model the convection that persists in the outer 
30% of the sun. Sustained convection in a medium is possible 
only if the medium is thermodynamically unstable to 
convection. Consequently, unchecked by nonlinear terms, the 
linearized governing equations possess exponentially 
growing instabilities, created by the thermodynamically 
unstable solar background model. 
 
 In section 2, I will briefly discuss the physics behind 
convective instabilities and the important properties of the 
solar near-surface layers, followed by which, in section 3, I 
shall describe a means to construct a thermodynamically 
stable near-surface layer that preserves the desired properties. 
In section 4, results from a numerical simulation are 
presented and in section 5, the content of this article is 
summarized. 

2. Convective instabilities and the near-surface region 
The Brunt-Väisälä frequency, N, is a derived thermodynamic 
property of a medium that describes the stability of its 
response to convective motions. It is given by  
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where ρ  is the density of the medium, p is the pressure, g the 
gravity, and Γ is defined as 
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where the ad subscript indicates that the derivative must be 
calculated along an adiabatic process line. If < 0, the 2N
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medium is deemed unstably stratified to convection, and 
motions that cause changes in temperature, density or 
pressure, act as precursors to convection. The outer 30% of 
the sun is in a constant state of convection precisely because 

< 0 in that region. More details regarding the physics of 
convection and its connection to the Brunt-Väisälä frequency 
may be found in Christensen-Dalsgaard (2003). In the sun, 
with the exception of the near-surface layers, convective 
instabilities are marginal and have timescales of the order of 
several days. However, the near-surface region represents a 
more complex problem since the Brunt-Väisälä frequency 
attains large negative values. Consequently, the instabilities 
grow quite rapidly, with timescales of the order of a few 
hours. These instabilities grow exponentially and due to the 
resultant large magnitudes, tend to reduce the accuracy of the 
calculation. 
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 It is important to prevent a numerical blow-up arising from 
the near-surface layers while also keeping in mind that 
including non-linear terms (that eventually quell any growing 
instabilities) will result in a substantial increase the 
computational expense. The idea presented in this paper is 
that of computing a near-surface region that is stable to 
convective motions while yet largely preserving other 
properties of consequence. 
 

The upper-most layers act as broadband reflectors of 
acoustic waves. This occurs because of the rapidly decreasing 
scale heights; and therefore the high acoustic cutoff 
frequencies. In simulations of the solar acoustic wave-field, it 
is important to preserve the reflective properties of the near-
surface layers. The model has to be hydrostatically stable, 
and must be a smooth extension of the interior state. In order 
to prevent aphysical reflections, we require that properties 
such as density, pressure and temperature be continuous and 
have continuous derivatives. We also require that gravity and 
the first adiabatic exponent, , to be continuous. Γ
 

An artificially constructed layer must satisfy all the 
properties listed above. 

3. Constructing an artificial near-surface region 
Using a combination of an isothermal near and super-surface 
layer between , placed above a 
polytrope-like sub-surface structure located 
between , all the required conditions, stated 
in section 2, have been satisfied. The polytrope-like sub-
surface layer for the region   is given by, 
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where r is the radius normalized by the solar radius, 0γ the 
ratio of specific heats of model S andγ , the ratio of specific 
heats of the artificial model. The temperature profile of most 
of the sub-surface artificial region is chosen to be same as the 
profile given by the original solar model, which in this case is 
the model S (Dalsgaard et al., 1996). The ratio of specific 
heats,γ , is chosen so as to enforce convective stability. On 
choosing the pressure and density profiles, the gravity is 
calculated according to the hydrostatic balance equation. For 
the layer corresponding to , we place an 
isothermal atmosphere, given by equations (5.38) and (5.39) 
of Christensen-Dalsgaard (2003). The pressure scale height 
term, H, in equations (5.38) and (5.39) is given by H = 90.5 
km, and the temperature in this region is 

0007.19998.0 ≤< r

KrT 8727)0007.19998.0( =≤< . We display the properties 
of the artificial model in Fig. 1 and Fig. 2. 
 

 
 
Fig. 1.  Plot shows the variation of various thermodynamic properties of the 
original background model of the solar surface (given by model S of the sun) 
and the artificial model of the surface. The dashed lines indicate model S and 
the continuous line indicates the artificial model. Note that density, pressure 
and sound speed are almost identical in the artificial model and model  S.  

4. Simulations with the artificial model 
The acoustic wave-field is simulated by solving the linearized 
Euler equations in a spherical shell extending from 0.2R to 
about 1.0004 R. The numerical techniques and validation 
procedures employed in this calculation may be found in 
Hanasoge et al. (2006). The waves in the simulation are 
constantly excited by radially directed dipoles located very 
near the surface. In Fig. 3, we demonstrate the stability of the 
model using the Root Mean Squared (RMS) histories of the 
latitudinal velocity component. The RMS velocity histories 
of a simulation with a model S interior coupled with the 
artificial model of the surface and a simulation purely with 
model S are compared. 
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5. Summary and conclusions 
A simulation of the solar acoustic wave-field is extremely 
useful in terms of attempting the forward problem; one can 
validate a wide range of results from helioseismology. In the 
past, there have been tests of helioseismology that have 
involved computations of acoustic wave-fields but none have 
been performed in spherical geometry; this is indeed the first 
computation of its kind. In modeling the acoustics, it is 
important to realize that while the sun has a wide range of 
scales, from as small as a meter to several million meters, it is 
not yet computationally feasible to model this entire 
spectrum. Keeping in mind the important issue of 
computational feasibility, we have to do away with the 
physics which that we believe is secondary. As stated earlier, 
a large saving on computational expense may be achieved 
when the assumption of linearity is invoked. 
 

 
Fig. 2.  Dot-dash lines indicate properties derived from model S and 
continuous lines correspond to the artificial model. The cutoff frequencies of 
the artificial model match those obtained from model S quite well. For the 
most part, the temperature profiles are identical. Gravity profiles look 
somewhat different, although this is not an issue. Most important of all, 
departing from the behaviour of model S, > 0 over the entire region in the 
artificial model. 
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In this paper, it was shown how convective instabilities are 

an integral part of the solar near-surface and that linearizing 
the governing equations while still using an accurate solar 
model creates an unstoppable exponential growth. To avoid 
the unpleasant consequences of this state of affairs, one may 
recast the solar near-surface layers to render it convectively 
stable, while yet preserving its crucial reflective properties. 
The artificial near-surface model coupled with the model S of 
the interior has been shown to be stable for long enough that 
clear helioseismic measurements may be performed. Using a 
pure model S representation of the sun is shown to be 

unfeasible when computing the wave-field in the linear limit 
of the Euler equations. 
 

 
 

Fig. 3.  Comparison between the latitudinal velocity RMS history obtained 
when simulating with the artificial model of the solar surface and a 
computation with the model S of the sun. In the lower panel, solving the 
linearized Euler equations, with model S serving as the background, leads to 
an exponential growth in the velocity magnitude. The upper panel shows the 
RMS history of a simulation with the background given by model S in the 
interior and an artificial model of the surface. It can be seen that the 
simulation is stable and it was determined that the RMS growth rate of the 
velocity is sub-linear. 
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